RENESAS

Datasheet

RA4M3 Group Renesas Microcontrollers	R01DS0368EJ0120
	Rev.1.20
	Dec 2, 2020

Leading-performance 100 MHz Arm Cortex-M33 core, up to 1 MB code flash memory with background and SWAP operation, 8 KB Data flash memory, and 128 KB SRAM with Parity/ECC. High-integration with USB 2.0 Full-Speed, SDHI, Quad SPI, and advanced analog. Integrated Secure Crypto Engine with cryptography accelerators, key management support, tamper detection and power analysis resistance in concert with Arm TrustZone for integrated secure element functionality.

Features

- Arm[®] Cortex[®]-M33 Core
- Armv8-M architecture with the main extension
- Armvolvi alcinecture with the main exter
 Maximum operating frequency: 100 MHz
 Arm Memory Protection Unit (Arm MPU)
- Protected Memory System Architecture (PMSAv8)
 Secure MPU (MPU_S): 8 regions
 Non-secure MPU (MPU_NS): 8 regions
- SysTick timer
- Embeds two Systick timers: Secure and Non-secure instance
- Driven by LOĆO or system clock
- CoreSight[™] ETM-M33

Memory

- Up to 1-MB code flash memory
- 8-KB data flash memory (100,000 program/erase (P/E) cycles)
- 128-KB SRAM

Connectivity

- Serial Communications Interface (SCI) × 6
- Asynchronous interfaces
- 8-bit clock synchronous interface
 Smart card interface
- Simple IIC
- Simple SPI
- Manchester coding (SCI3, SCI4)
- I^2C bus interface (IIC) $\times 2$
- Serial Peripheral Interface (SPI)
- Quad Serial Peripheral Interface (QSPI)
- USB 2.0 Full-Speed Module (USBFS)
 Control Area Network module (CAN) × 2
- SD/MMC Host Interface (SDHI) • Serial Sound Interface Enhanced (SSIE)

Analog

- 12-bit A/D Converter (ADC12) × 2
- 12-bit D/A Converter (DAC12) × 2 Temperature Sensor (TSN)
- Timers
- General PWM Timer 32-bit (GPT32) × 4
- General PWM Timer 16-bit (GPT16) × 4
- Low Power Asynchronous General Purpose Timer (AGT) × 6

Security and Encryption

- Secure Crypto Engine 9
- Symmetric algorithms: AES
- Asymmetric algorithms: RSA, ECC, and DSA - Hash-value generation: SHA224, SHA256, GHASH
- 128-bit unique ID
- Arm[®] TrustZone[®]
- Up to three regions for the code flash
- Up to two regions for the data flash
 Up to three regions for the SRAM
- Individual secure or non-secure security attribution for each peripheral • Device lifecyle management
- Pin function
- Up to three tamper pins
- Secure pin multiplexing

System and Power Management

- Low power modes
- Battery backup function (VBATT)
 Realtime Clock (RTC) with calendar and VBATT support
- Event Link Controller (ELC) • Data Transfer Controller (DTC)
- DMA Controller (DMAC) × 8
- Power-on reset
- Low Voltage Detection (LVD) with voltage settings
- Watchdog Timer (WDT)

RENESAS

RA4M3 Group

Renesas Microcontrollers

性能领先的100MHzArmCortex-M33内核、高达1MB的具有后台和SWAP操作的代码闪存、8KB数据闪存和具有奇偶校验ECC 的128KBSRAM。与USB2.0全速、SDHI、OuadSPI和高级模拟的高度集成。具有加密加速器的集成安全加密引擎、密钥管理支 持、篡改检测和电源分析抗性与ArmTrustZone相结合,可实现集成安全元件功能。

Features

■Arm[®]Cortex[®]-M33内核 ●带有主扩展的Armv8-M架构●最大工作频率:10 0MHz●Arm内存保护单元(ArmMPL

受保护的内存系统架构(PMSAv8) 安全MPU(MPU S): 8个区域 非安全MPU(MPU_NS): 8个区域●Sy sTick计时器

嵌入两个Systick计时器:安全和非安全实例 由LOCO或系 统时钟驱动●CoreSight ETM-M33

Memory

●高达1-MB代码闪存●8-KB数据闪存(100 000次程序擦 除(PE)周期) ●128-KBSRAM

Connectivity

●串行通信接口(SCI)×6-异步接口-8位时 钟同步接口-智能卡接口-简单IIC-简单SPI -曼彻斯特编码(SCI3 SCI4)●I2C总线接口(IIC)×2●串行外设接口(SPI)●四路串行外 设接口(QSPI)●USB2.0全速模块(USBFS) ●控制局域网模块(CAN)×2●SDMMC主 机接口(SDHI)●增强型串行声音接口(SSIE

Analog ●12位模数转换器(ADC12)×2●12位模 数转换器(DAC12)×2●温度传感器(TSN)

Timers

●通用PWM定时器32位(GPT32)×4●通用PWM定时器16 位(GPT16)×4●低功耗异步通用定时器(AGT)×6

■安全和加密●安全加密

引擎9 对称算法: AES 非对称算法: RSA、ECC和DSA 哈 希值生成: SHA224、SHA256、GHASH 128位唯一I DOArm[®]TrustZone[®]

代码闪存最多三个区域 数据闪存最多两个区域 SRAM最 多三个区域 每个外围设备的单独安全或非安全安全属性● 设备生命周期管理●引脚功能

最多三个防篡改引脚 安全引脚复用

■系统和电源管理●低功耗模式●电池备份功能(VBATT) ●支持日历和VBATT的实时时钟(RTC)●事件链接控制器(ELC)●数据传输控制器(DTC)●DMA控制器(DMAC)×8 上电复位●具有电压设置的低电压检测(LVD)●看门狗定 时器(WDT)

• Capacitive Touch Sensing Unit (CTSU)

■ General-Purpose I/O Ports

Multiple Clock Sources

Human Machine Interface (HMI)

Independent Watchdog Timer (IWDT)

- Main clock oscillator (MOSC) (8 to 24 MHz)
 Sub-clock oscillator (SOSC) (32.768 kHz)
 High-speed on-chip oscillator (HOCO) (16/18/20 MHz)
- Middle-speed on-chip oscillator (MOCO) (8 MHz)

· 5-V tolerance, open drain, input pull-up, switchable driving ability

- Low-speed on-chip oscillator (LOCO) (32.768 kHz)
- IWDT-dedicated on-chip oscillator (15 kHz)
 Clock trim function for HOCO/MOCO/LOCO

Operating Temperature and Packages

- 144-pin LQFP (20 mm × 20 mm, 0.5 mm pitch)

- 64-pin LQFP (10 mm × 10 mm, 0.5 mm pitch)

100-pin LQFP (14 mm × 14 mm, 0.5 mm pitch)

• PLL/PLL2 Clock out support

Operating Voltage

• VCC: 2.7 to 3.6 V

• Ta = -40° C to $+105^{\circ}$ C

Datasheet

R01DS0368EJ0120 Rev.1.20 Dec 2, 2020

●独立看门狗定时器(IWDT)

■人机界面(HMI)●电容式触摸感应单元(CTSU)

■多个时钟源

● 注时钟振荡器(MOSC) (8至24MHz)●副时钟振荡器(SOSC) (32.768kHz)●高速片上振荡器(HOCO) (161820MHz)●中速片上振荡器(MOCO)(8MHz)●低速片上振荡器(LOCO)(32.768kHz)●IWDT 专用片上振荡器(15kHz)●HOCOMOCOLOCO的时钟微调功能●PLLPLL2●时钟输出支持

General-Purpose I/O Ports ●5V容差、开漏、输入上拉、可切换驱动能力

■工作电压●VCC: 2. 7至3.6V

■工作温度和封装●Ta=-40℃to+105℃

- 144-pin LQFP (20 mm × 20 mm, 0.5 mm pitch)
- 100-pin LQFP (14 mm × 14 mm, 0.5 mm pitch) - 64-pin LQFP (10 mm × 10 mm, 0.5 mm pitch)

R01DS0368EJ0120 Rev.1.20 Dec 2, 2020

1. Overview

The MCU integrates multiple series of software- and pin-compatible Arm[®]-based 32-bit cores that share a common set of Renesas peripherals to facilitate design scalability and efficient platform-based product development.

The MCU in this series incorporates a high-performance Arm Cortex[®]-M33 core running up to 100 MHz with the following features:

- Up to 1 MB code flash memory
- 128 KB SRAM
- Quad Serial Peripheral Interface (QSPI)
- USBFS, SD/MMC Host Interface
- Capacitive Touch Sensing Unit (CTSU)
- Analog peripherals
- Security and safety features

1.1 Function Outline

Table 1.1 Arm core

Feature	Functional description
Arm Cortex-M33 core	 Maximum operating frequency: up to 100 MHz Arm Cortex-M33 core: Armv8-M architecture with security extension Revision: r0p4-00rel0 Arm Memory Protection Unit (Arm MPU) Protected Memory System Architecture (PMSAv8) Secure MPU (MPU_S): 8 regions Non-secure MPU (MPU_NS): 8 regions SysTick timer Embeds two Systick timers: Secure and Non-secure instance Driven by SysTick timer clock (SYSTICCLK) or system clock (ICLK)

Table 1.2 Memory

Feature	Functional description
Code flash memory	Maximum 1 MB of code flash memory.
Data flash memory	8 KB of data flash memory.
Option-setting memory	The option-setting memory determines the state of the MCU after a reset.
SRAM	On-chip high-speed SRAM with either parity bit or Error Correction Code (ECC).

Table 1.3 System (1 of 2)

	Functional description
Operating modes	Two operating modes: • Single-chip mode • SCI/USB boot mode
Resets	The MCU provides 14 resets.
Low Voltage Detection (LVD)	The Low Voltage Detection (LVD) module monitors the voltage level input to the VCC pin. The detection level can be selected by register settings. The LVD module consists of three separate voltage level detectors (LVD0, LVD1, LVD2). LVD0, LVD1, and LVD2 measure the voltage level input to the VCC pin. LVD registers allow your application to configure detection of VCC changes at various voltage thresholds.

RA4M3 Datasheet

1. Overview

MCU集成了多个系列的软件和基于Arm[®]引脚兼容的32位内核,这些内核共享一组通用的 瑞萨外围设备可促进设计可扩展性和高效的基于平台的产品开发。 该系列中的MCU包含一个运行频率高达100MHz的高性能ArmCortex[®]-M33内核,具有以下特性:

●高达1MB的代码闪存

- 128 KB SRAM
- ●四路串行外设接口(QSPI)
- ●USBFS、SDMMC主机接口
- ●电容式触控感应单元(CTSU)
- ●模拟外设
- ●安全和安全功能

1.1 功能概要

Table 1.1 臂芯

Feature	功能说明
ArmCortex-M33内核	 最大工作频率:高达100 Arm Cortex-M33 core: 带有安全扩展的Arm Revision: r0p4-00re Arm内存保护单元 (Arml 受保护的内存系统架 安全MPU(MPU_S): Non-secure MPU (N SysTick timer 嵌入两个Systick计断 由SysTick定时器时野 CoreSight[™] ETM-M33

Table 1.2 Memory

Feature	功能说明
代码闪存	最大1MB代码闪存。
数据闪存	8KB数据闪存。
Option-setting memory	选项设置存储器确定复位后MC
SRAM	具有奇偶校验位或纠错码(ECC)

Table 1.3 系统(1of2)

	功能说明
操作模式	两种操作模式:●
	● SCIUSB启动模式
Resets	MCU提供14次复位。
低电压检测(LVD)	低电压检测(LVD)模块监控输入 D模块由三个独立的电压电平档 入到VCC引脚的电压电平。LVI

MHz

nv8-M架构 el0 MPU) 段构(PMSAv8) 8个区域 MPU_NS): 8 regions

寸器:安全和非安全实例 钟(SYSTICCLK)或系统时钟(ICLK)驱动

CU的状态。

)的片上高速SRAM。

入到VCC引脚的电压电平。检测等级可以通过寄存器设置来选择。LV 检测器(LVD0、LVD1、LVD2)组成。LVD0、LVD1和LVD2测量输 /D寄存器允许您的应用程序配置在各种电压阈值下检测VCC变化。

Table 1.3 System (2 of 2)

	Functional description
Clocks	 Main clock oscillator (MOSC) Sub-clock oscillator (SOSC) High-speed on-chip oscillator (HOCO) Middle-speed on-chip oscillator (MOCO) Low-speed on-chip oscillator (LOCO) IWDT-dedicated on-chip oscillator PLL/PLL2 Clock out support
Clock Frequency Accuracy Measurement Circuit (CAC)	The Clock Frequency Accuracy Measurement Circuit (CAC) counts pulses of the clock to be measured (measurement target clock) within the time generated by the clock selected as the measurement reference (measurement reference clock), and determines the accuracy depending on whether the number of pulses is within the allowable range. When measurement is complete or the number of pulses within the time generated by the measurement reference clock is not within the allowable range, an interrupt request is generated.
Interrupt Controller Unit (ICU)	The Interrupt Controller Unit (ICU) controls which event signals are linked to the Nested Vector Interrupt Controller (NVIC), the DMA Controller (DMAC), and the Data Transfer Controller (DTC) modules. The ICU also controls non-maskable interrupts.
Low power modes	Power consumption can be reduced in multiple ways, including setting clock dividers, stopping modules, selecting power control mode in normal operation, and transitioning to low power modes.
Battery backup function	A battery backup function is provided for partial powering by a battery. The battery-powered area includes the RTC, SOSC, backup memory, and switch between VCC and VBATT.
Register write protection	The register write protection function protects important registers from being overwritten due to software errors. The registers to be protected are set with the Protect Register (PRCR).
Memory Protection Unit (MPU)	The MCU has one Memory Protection Unit (MPU).

Table 1.4 Event link

Feature	Functional description
Event Link Controller (ELC)	The Event Link Controller (ELC) uses the event requests generated by various peripheral modules as source signals to connect them to different modules, allowing direct link between the modules without CPU intervention.

Table 1.5 Direct memory access

Feature	Functional description
Data Transfer Controller (DTC)	A Data Transfer Controller (DTC) module is provided for transferring data when activated by an interrupt request.
DMA Controller (DMAC)	The MCU includes an 8-channel direct memory access controller (DMAC) that can transfer data without intervention from the CPU. When a DMA transfer request is generated, the DMAC transfers data stored at the transfer source address to the transfer destination address.

Table 1.6 External bus interface

Feature	Functional description
External buses	QSPI area (EQBIU): Connected to the QSPI (external device interface)

Table 1.7 Timers (1 of 2)

Feature	Functional description
General PWM Timer (GPT)	The General PWM Timer (GPT) is a 32-bit timer with GPT32 × 4 channels and a 16-bit timer with GPT16 × 4 channels. PWM waveforms can be generated by controlling the up-counter, down-counter, or the up- and down-counter. In addition, PWM waveforms can be generated for controlling brushless DC motors. The GPT can also be used as a general-purpose timer.
Port Output Enable for GPT (POEG)	The Port Output Enable (POEG) function can place the General PWM Timer (GPT) output pins in the output disable state

RA4M3 Datasheet

Table 1.3 系统(2之2)

	功能说明
Clocks	 主时钟振荡器(MOSC) Sub-clock oscillator (SOS High-speed on-chip oscil Middle-speed on-chip oscill Low-speed on-chip oscill IWDT-dedicated on-chip PLL/PLL2 打卡支持
时钟频率精度测量电路(CAC)	时钟频率精度测量电路(CAC)在 时钟(测量目标时钟)的脉冲 钟产生的时间内的脉冲数不在
中断控制器单元(ICU)	中断控制器单元(ICU)控制哪些 中断控制器(NVIC)、DMA控制 断。
低功耗模式	可以通过多种方式降低功耗, 式以及转换到低功耗模式。
电池备份功能	提供电池备份功能,由电池部 ATT之间的切换。
寄存器写保护	寄存器写保护功能可保护重要 CR)设置。
内存保护单元(MPU)	MCU有一个内存保护单元(MPL

Table 1.4 沽功斑技

Feature	功能说明
事件链接控制器(ELC)	EventLinkController(ELC)使用 块,允许模块之间直接链接,

Table 1.5 直接内存访问

Feature	功能说明
数据传输控制器(DTC)	数据传输控制器(DTC)模块用于
DMA Controller (DMAC)	MCU包括一个8通道直接内存订 输请求时,DMAC将存储在传输

Table 1.6 外部总线接口

Feature

Feature	功能说明	
外部总线	● QSPI区(EQBIU):	连接

计时器(1of2) Table 1.7

Feature	功能说明
通用PWM定时器(GPT)	通用PWM定时器(GPT)是一个。 GPT16×4通道。PWM波形可以 以生成PWM波形来控制无刷直
GPT(POEG)的端口输出使能	端口输出使能(POEG)功能可以

1. Overview

SC) illator (HOCO) scillator (MOCO) llator (LOCO) oscillator

在被选为测量基准的时钟(测量基准时钟)产生的时间内对要测量的 P进行计数,并根据脉冲数在允许范围内。当测量完成或测量参考时 E允许范围内时,将产生中断请求。

事件信号链接到嵌套向量 器(DMAC)和数据传输控制器(DTC)模块。ICU还控制不可屏蔽的中

包括设置时钟分频器、停止模块、在正常操作中选择电源控制模

分供电。电池供电区域包括RTC、SOSC、备份存储器以及VCC和VB

寄存器不因软件错误而被覆盖。要保护的寄存器由保护寄存器(PR

U)。

各种外围模块产生的事件请求作为源信号,将它们连接到不同的模 无需CPU干预。

-在被中断请求激活时传输数据。

访问控制器(DMAC),无需CPU干预即可传输数据。当产生DMA传 输源地址的数据传输到传输目标地址。

到QSPI(外部设备接口)

具有GPT32×4通道的32位定时器和一个具有 以通过控制加计数器、减计数器或加减计数器来产生。此外,可 直流电机。GPT也可以用作通用定时器。

、将通用PWM定时器(GPT)输出引脚置于输出禁用状态

Table 1.7 Timers (2 of 2)

Feature	Functional description
Low power Asynchronous General Purpose Timer (AGT)	The low power Asynchronous General Purpose Timer (AGT) is a 16-bit timer that can be used for pulse output, external pulse width or period measurement, and counting external events. This timer consists of a reload register and a down counter. The reload register and the down counter are allocated to the same address, and can be accessed with the AGT register.
Realtime Clock (RTC)	The realtime clock (RTC) has two counting modes, calendar count mode and binary count mode that are used by switching register settings. For calendar count mode, the RTC has a 100-year calendar from 2000 to 2099 and automatically adjusts dates for leap years. For binary count mode, the RTC counts seconds and retains the information as a serial value. Binary count mode can be used for calendars other than the Gregorian (Western) calendar.
Watchdog Timer (WDT)	The Watchdog Timer (WDT) is a 14-bit down counter that can be used to reset the MCU when the counter underflows because the system has run out of control and is unable to refresh the WDT. In addition, the WDT can be used to generate a non-maskable interrupt or an underflow interrupt.
Independent Watchdog Timer (IWDT)	The Independent Watchdog Timer (IWDT) consists of a 14-bit down counter that must be serviced periodically to prevent counter underflow. The IWDT provides functionality to reset the MCU or to generate a non-maskable interrupt or an underflow interrupt. Because the timer operates with an independent, dedicated clock source, it is particularly useful in returning the MCU to a known state as a fail-safe mechanism when the system runs out of control. The IWDT can be triggered automatically by a reset, underflow, refresh error, or a refresh of the count value in the registers.

Table 1.8 Communication interfaces (1 of 2)

Feature	Functional description
Serial Communications Interface (SCI)	The Serial Communications Interface (SCI) × 6 channels have asynchronous and synchronous serial interfaces: Asynchronous interfaces (UART and Asynchronous Communications Interface Adapter (ACIA)) 8-bit clock synchronous interface Simple IIC (master-only) Simple SPI Smart card interface Manchester interface Extended Serial interface The smart card interface complies with the ISO/IEC 7816-3 standard for electronic signals and transmission protocol. SCIn (n = 0, 3, 4, 9) has FIFO buffers to enable continuous and full-duplex communication, and the data transfer speed can be configured independently using an on-chip baud rate generator.
I ² C bus interface (IIC)	The I^2C bus interface (IIC) has 2 channels. The IIC module conforms with and provides a subset of the NXP I^2C (Inter-Integrated Circuit) bus interface functions.
Serial Peripheral Interface (SPI)	The Serial Peripheral Interface (SPI) provides high-speed full-duplex synchronous serial communications with multiple processors and peripheral devices.
Control Area Network (CAN)	The Controller Area Network (CAN) module uses a message-based protocol to receive and transmit data between multiple slaves and masters in electromagnetically noisy applications. The module complies with the ISO 11898-1 (CAN 2.0A/CAN 2.0B) standard and supports up to 32 mailboxes, which can be configured for transmission or reception in normal mailbox and FIFO modes. Both standard (11-bit) and extended (29-bit) messaging formats are supported. The CAN module requires an additional external CAN transceiver.
USB 2.0 Full-Speed module (USBFS)	The USB 2.0 Full-Speed module (USBFS) can operate as a host controller or device controller. The module supports full-speed and low-speed (host controller only) transfer as defined in Universal Serial Bus Specification 2.0. The module has an internal USB transceiver and supports all of the transfer types defined in Universal Serial Bus Specification 2.0. The USB has buffer memory for data transfer, providing a maximum of 10 pipes. Pipes 1 to 9 can be assigned any endpoint number based on the peripheral devices used for communication or based on your system.
Quad Serial Peripheral Interface (QSPI)	The Quad Serial Peripheral Interface (QSPI) is a memory controller for connecting a serial ROM (nonvolatile memory such as a serial flash memory, serial EEPROM, or serial FeRAM) that has an SPI-compatible interface.

RA4M3 Datasheet

1. Overview

Table 1.7 ^{计时器 (2个中的2个)}

Feature	功能说明
低功耗异步通用 目的定时器(AGT)	低功耗异步通用定时器(AGT)员 外部事件计数。该定时器由一 配到同一个地址,可以通过AC
实时时钟(RTC)	实时时钟(RTC)有两种计数模式 于日历计数模式,RTC有一个/ 进制计数模式,RTC会计算秒数 的日历。
看门狗定时器(WDT)	看门狗定时器(WDT)是一个14 控且无法刷新WDT。此外,W
独立看门狗定时器(IWDT)	独立看门狗定时器(IWDT)包含 WDT提供复位MCU或生成不可 行,因此当系统失控时,它在 过复位、下溢、刷新错误或寄

通信接口(2个中的1个) Table 1.8

Feature	功能说明
串行通信接口(SCI)	串行通信接口(SCI)×6通道具有 异步接口 (UART和异步道 8位时钟同步接口 Simple IIC (master-only) 简单的SPI 智能卡接口 曼彻斯特界面 扩展串行接口 智能卡接口符合ISOIEC7816 连续和全双工通信,并且可以
I2C总线接口(IIC)	I2C总线接口(IIC)有2个通道。]
串行外设接口(SPI)	串行外围接口(SPI)提供与多个
控制区域网络(CAN)	控制器局域网(CAN)模块使用基数据。该模块符合ISO11898- 和FIFO模式下的发送或接收。 外部CAN收发器。
USB2.0全速模块(USBFS)	USB2.0全速模块(USBFS)可以作 该模块支持全速和低速(仅限 通用串行总线规范2.0。该模块 输类型。USB具有用于数据传 设备或根据您的系统为管道13
四路串行外设接口(QSPI)	QuadSerialPeripheralInterface M(非易失性存储器,例如串

是一个16位定时器,可用于脉冲输出、外部脉冲宽度或周期测量以及 ·个重载寄存器和一个递减计数器组成。重载寄存器和递减计数器分 ST寄存器访问。

式,日历计数模式和二进制计数模式,通过切换寄存器设置使用。对 从2000年到2099年的100年日历,并自动调整闰年的日期。对于二 数并将信息保留为序列值。二进制计数模式可用于公历(西方)以外

位递减计数器,可用于在计数器下溢时复位MCU,因为系统已失 /DT可用于产生不可屏蔽中断或下溢中断。

合一个14位递减计数器,必须定期对其进行服务以防止计数器下溢。I 可屏蔽中断或下溢中断的功能。由于定时器使用独立的专用时钟源运 E将MCU作为故障安全机制返回到已知状态时特别有用。IWDT可以通 存器中的计数值的刷新来自动触发。

毎异步和同步串行接口: ●

通信接口适配器(ACIA))

3电子信号和传输协议标准。SCIn(n=0349)具有FIFO缓冲区以实现 使用片上波特率发生器独立配置数据传输速度。

IIC模块符合并提供NXPI2C(内部集成电路)总线接口功能的子集。

处理器和外围设备的高速全双工同步串行通信。

基于消息的协议在电磁噪声应用中的多个从机和主机之间接收和传输 -1(CAN2.0ACAN2.0B)标准,最多支持32个邮箱,可配置为普通邮箱 支持标准(11位)和扩展(29位)消息格式。CAN模块需要额外的

作为主机控制器或设备控制器运行。 **!主机控制器)传输,如** 决有一个内部USB收发器,支持通用串行总线规范2.0中定义的所有传 输的缓冲存储器,最多可提供10个管道。可以根据用于通信的外围 到9分配任何端点编号。

e(QSPI)是一种存储器控制器,用于连接具有SPI兼容接口的串行RO i行闪存、串行EEPROM或串行FeRAM)。

Table 1.8 Communication interfaces (2 of 2)

Feature	Functional description
Serial Sound Interface Enhanced (SSIE)	The Serial Sound Interface Enhanced (SSIE) peripheral provides functionality to interface with digital audio devices for transmitting I ² S/Monaural/TDM audio data over a serial bus. The SSIE supports an audio clock frequency of up to 50 MHz, and can be operated as a slave or master receiver, transmitter, or transceiver to suit various applications. The SSIE includes 32-stage FIFO buffers in the receiver and transmitter, and supports interrupts and DMA-driven data reception and transmission.
SD/MMC Host Interface (SDHI)	The SDHI and MultiMediaCard (MMC) interface module provides the functionality required to connect a variety of external memory cards to the MCU. The SDHI supports both 1- and 4-bit buses for connecting memory cards that support SD, SDHC, and SDXC formats. When developing host devices that are compliant with the SD Specifications, you must comply with the SD Host/Ancillary Product License Agreement (SD HALA). The MMC interface supports 1-bit, 4-bit, and 8-bit MMC buses that provide eMMC 4.51 (JEDEC Standard JESD 84-B451) device access. This interface also provides backward compatibility and supports high-speed SDR transfer modes.

Table 1.9 Analog

	Functional description
12-bit A/D Converter (ADC12)	A 12-bit successive approximation A/D converter is provided. Up to 22 analog input channels are selectable. Temperature sensor output and internal reference voltage are selectable for conversion.
12-bit D/A Converter (DAC12)	A 12-bit D/A converter (DAC12) is provided.
Temperature Sensor (TSN)	The on-chip Temperature Sensor (TSN) determines and monitors the die temperature for reliable operation of the device. The sensor outputs a voltage directly proportional to the die temperature, and the relationship between the die temperature and the output voltage is fairly linear. The output voltage is provided to the ADC12 for conversion and can be further used by the end application.

Table 1.10 Human machine interfaces

Feature	Functional description
Capacitive Touch Sensing Unit (CTSU)	The Capacitive Touch Sensing Unit (CTSU) measures the electrostatic capacitance of the touch sensor. Changes in the electrostatic capacitance are determined by software that enables the CTSU to detect whether a finger is in contact with the touch sensor. The electrode surface of the touch sensor is usually enclosed with an electrical conductor so that a finger does not come into direct contact with the electrode.

Table 1.11 Data processing

Feature	Functional description
Cyclic Redundancy Check (CRC) calculator	The Cyclic Redundancy Check (CRC) calculator generates CRC codes to detect errors in the data. The bit order of CRC calculation results can be switched for LSB-first or MSB-first communication. Additionally, various CRC-generation polynomials are available.
Data Operation Circuit (DOC)	The Data Operation Circuit (DOC) compares, adds, and subtracts 16-bit data. When a selected condition applies, 16-bit data is compared and an interrupt can be generated.

RA4M3 Datasheet

Feature	功能说明
增强型串行声音接口(SSIE)增强型串行 。SSIE支持高达50MHz的音频时钟频率 含32级FIFO缓冲区,并支持中断和DM	^{告音} 接口(SSIE)外设提供与数字音 ,并可作为从属或主接收器、发 A驱动的数据接收和发送。
SDMMC主机接口(SDHI)	SDHI和多媒体卡(MMC)接口 4位总线,用于连接支持SD、 必须遵守SD主机辅助产品许可 4-B451)器件访问的1位、4 式。

Table 1.9 Analog

		功能说明
	12-bit A/D Converter (ADC12)	提供了一个12位逐次逼近模数 内部参考电压进行转换。
	12-bit D/A Converter (DAC12)	提供了一个12位DA转换器(DA
	温度传感器(TSN)	片上温度传感器(TSN)确定并监 的电压,管芯温度与输出电压 以被最终应用进一步使用。
\mathbb{Z}		

Table 1.10 人机界面

Feature	功能说明
电容式触控感应单元(CTSU)	电容式触摸传感单元(CTSU)测 CTSU能够检测手指是否与触摸 不会直接接触电极。

Table 1.11 数据处理

Feature	功能说明
循环冗余校验(CRC)计算器	循环冗余校验(CRC)计算器生成 为LSB-first或MSB-first通信。
数据运算电路(DOC)	数据运算电路(DOC)对16位数 以生成中断。

1. Overview

频设备接口的功能,用于通过串行总线传输I2S单声道TDM音频数据 送器或收发器运行,以适应各种应用。SSIE在接收器和发送器中包

模块提供将各种外部存储卡连接到MCU所需的功能。SDHI支持1位和 、SDHC和SDXC格式的存储卡。在开发符合SD规范的主机设备时,您 可协议(SDHALA)。MMC接口支持提供eMMC4.51(JEDEC标准JESD8 4位和8位MMC总线。该接口还提供向后兼容性并支持高速SDR传输模

如转换器。最多可选择22个模拟输入通道。可选择温度传感器输出和

AC12)。

监控芯片温度,以确保器件可靠运行。传感器输出与管芯温度成正比 运之间的关系相当线性。输出电压被提供给ADC12进行转换,并且可

则量触摸传感器的静电电容。静电电容的变化由软件确定,该软件使 摸传感器接触。触摸传感器的电极表面通常被电导体包围,因此手指

或CRC代码以检测数据中的错误。CRC计算结果的位顺序可以切换 此外,还可以使用各种CRC生成多项式。

据进行比较、加法和减法。当适用选定条件时,比较16位数据并可

1. Overview

1.2 **Block Diagram**

Figure 1.1 shows a block diagram of the MCU superset. Some individual devices within the group have a subset of the features.

1.3 Part Numbering

Figure 1.2 shows the product part number information, including memory capacity and package type. Table 1.12 shows a list of products.

	Memory		Bus		Arm Cortex-I
	1MB代码闪存]	MPU]	DSP
	8KB数据闪存				IDAU
	128 KB SRAM]			MPU
	1 KB Standby SRAM]			NVIC
	DMA				系统定时器
	DTC				测试和DBG接口
	DMAC × 8				
	Timers		通讯	安口	
	GPT32 x 4 GPT16 x 4	[SCI × 6		QSPI
		[IIC × 2		SDHI
	AGT × 6		SPI		CAN × 2
	RTC	r	SSIE	Γ	USBFS
	WDT/IWDT]		
	活动链接 ELC] [数据处 CRC	b理 】	
]		L T	
	Security SCE9				
Note:	∟	」 L 可用。	5		
Figure 1.1	框图				
1.3 퇵	零件编号				

RA4M3 Datasheet

框图 1.2

图1.1显示了MCU超集的框图。组内的某些单独设备具有部分功能。

图1.2显示了产品部件号信息,包括内存容量和封装类型。表1.12显示了产品列表。

1. Overview

RA4M3 Datasheet

Figure 1.2 Part numbering scheme

Table 1.12 Product list

Product part number	Package code	Code flash	Data flash	SRAM	Operating temperature
R7FA4M3AF3CFB	PLQP0144KA-B	1 MB	8 KB	128 KB	-40 to +105°C
R7FA4M3AF3CFP	PLQP0100KB-B				
R7FA4M3AF3CFM	PLQP0064KB-C				
R7FA4M3AE3CFB	PLQP0144KA-B	768 KB	8 KB	128 KB	-40 to +105°C
R7FA4M3AE3CFP	PLQP0100KB-B				
R7FA4M3AE3CFM	PLQP0064KB-C				
R7FA4M3AD3CFB	PLQP0144KA-B	512 KB	8 KB	128 KB	-40 to +105°C

Figure 1.2

产品列表 Table 1.12

产品部件号	包装代码	代码闪存	数据 闪存	SRAM	工作温度
R7FA4M3AF3CFB	PLQP0144KA-B	1 MB	8 KB	128 KB	-40 to +105°C
R7FA4M3AF3CFP	PLQP0100KB-B				
R7FA4M3AF3CFM	PLQP0064KB-C				
R7FA4M3AE3CFB	PLQP0144KA-B	768 KB	8 KB	128 KB	-40 to +105°C
R7FA4M3AE3CFP	PLQP0100KB-B				
R7FA4M3AE3CFM	PLQP0064KB-C				
R7FA4M3AD3CFB	PLQP0144KA-B	512 KB	8 KB	128 KB	-40 to +105°C

A 0	
	生产识别码
	包装、端子材料(无铅)#AA:仅托盘 Sn(锡)#AC:托盘其他
	包装类型 FB: LQFP 144 pins FP: LQFP 100 pins FM: LQFP 64 pins 质量等级
	工作温度3:−40℃至1 05℃
	代码闪存大小 D: 512 KB E: 768 KB F: 1 MB 功能集
	组号
	系列名称
	类风湿关节炎
	闪存
	Renesas microcontroller

RA4M3 Datasheet

1.4 Function Comparison

Table 1.13 Function Comparison

Parts number		R7FA4M3AF3CFB R7FA4M3AE3CFB R7FA4M3AD3CFB	R7FA4M3AF3CFP R7FA4M3AE3CFP	R7FA4M3AF3CFM R7FA4M3AE3CFM				
Pin count		144	144 100 64					
Package			LQFP					
Code flash memory		1 MB 768 KB 512 KB	1 MB 1 MB 768 KB 768 KB 512 KB					
Data flash memory			8 KB					
SRAM			128 KB					
	Parity	64 KB						
	ECC		64 KB					
Standby SRAM			1 KB					
DMA	DTC		Yes					
	DMAC		8					
System	CPU clock		100 MHz (max.)					
	CPU clock sources	MOSC,	SOSC, HOCO, MOCO, LO	CO, PLL				
	CAC		Yes					
	WDT/IWDT	Yes						
	Backup register		128 B					
Communication	SCI		6					
	IIC	2						
	SPI	1						
	CAN		2					
	USBFS		Yes					
	QSPI		Yes					
	SSIE	Y	/es	No				
	SDHI/MMC	Y	es	No				
Timers	GPT32 ^{*1}		4					
	GPT16 ^{*1}		4					
	AGT ^{*1}		6					
	RTC		Yes					
Analog	ADC12	Unit 0: 12 Unit 1: 10	Unit 0: 11 Unit 1: 9	Unit 0: 7 Unit 1: 4				
	DAC12	2						
	TSN	Yes						
НМІ	CTSU	20	12	7				
Data processing	CRC	Yes						
	DOC	Yes						
Event control ELC		Yes						
Security		SCE9, Ti	rustZone, and Lifecycle ma	nagement				

Note 1. Available pins depend on the Pin count, about details see section 1.7. Pin Lists.

1. Overview

RA4M3 Datasheet

1.4 功能比较

Table 1.13 功能比较

零件编号		R7FA4M3AF3CFB R7FA4M3AE3CFB R7FA4M3AD3CFB	R7FA4M3AF3CFP R7FA4M3AE3CFP	R7FA4M3AF3CFM R7FA4M3AE3CFM			
针数		144	100	64			
Package			LQFP				
代码闪存		1 MB 768 KB 512 KB	1 MB 1 MB 768 KB 768 KB 512 KB				
数据闪存			8 KB				
SRAM			128 KB				
	Parity		64 KB				
	ECC		64 KB				
Standby SRAM			1 KB				
DMA	DTC		Yes				
	DMAC		8				
System	中央处理器时钟		100 MHz (max.)				
	CPU时钟源	MOS	C, SOSC, HOCO, MOCO, L	OCO, PLL			
	CAC		Yes				
	WDT/IWDT		Yes				
	备份寄存器	128 B					
Communication	SCI		6				
	IIC	2					
	SPI		1				
	CAN		2				
	USBFS		Yes				
	QSPI		Yes				
	SSIE		Yes	No			
	SDHI/MMC		Yes	No			
Timers	GPT32 ^{*1}		4				
	GPT16 ^{*1}		4				
	AGT ^{*1}		6				
	RTC		Yes				
Analog	ADC12	Unit 0: 12 Unit 1: 10	Unit 0: 11 Unit 1: 9	Unit 0: 7 Unit 1: 4			
	DAC12		2				
	TSN		Yes				
НМІ	CTSU	20	20 12				
数据处理	CRC		Yes				
	DOC		Yes				
事件控制	ELC		Yes				
Security	· ·	SCE9、	TrustZone和生命周期管理				

注1.可用管脚取决于管脚数,详情见1.7节。引脚列表。

R01DS0368EJ0120 Rev.1.20 Dec 2, 2020

1.5 Pin Functions

Table 1.14Pin functions (1 of 4)

Function	Signal	I/O	Description	
Power supply	VCC	Input	Power supply pin. Connect it to the system power supply. Connect this pin to VSS by a $0.1-\mu F$ capacitor. The capacitor should be placed close to the pin.	
	VCL/VCL0	I/O	Connect this pin to the VSS pin by the smoothing capacitor used stabilize the internal power supply. Place the capacitor close to th pin.	
	VSS	Input	Ground pin. Connect it to the system power supply (0 V).	
	VBATT	Input	Battery Backup power pin	
Clock	XTAL	Output	Pins for a crystal resonator. An external clock signal can be input	
	EXTAL	Input	through the EXTAL pin.	
	XCIN	Input	Input/output pins for the sub-clock oscillator. Connect a crystal	
	XCOUT	Output	resonator between XCOUT and XCIN.	
	CLKOUT	Output	Clock output pin	
Operating mode control	MD	Input	Pin for setting the operating mode. The signal level on this pin must not be changed during operation mode transition on release from the reset state.	
System control	RES	Input	Reset signal input pin. The MCU enters the reset state when this signal goes low.	
CAC	CACREF	Input	Measurement reference clock input pin	
On-chip emulator	TMS	I/O	On-chip emulator or boundary scan pins	
	TDI	Input		
	тск	Input		
	TDO	Output		
	TCLK	Output	Output clock for synchronization with the trace data	
	TDATA0 to TDATA3	Output	Trace data output	
	SWO	Output	Serial wire trace output pin	
	SWDIO	I/O	Serial wire debug data input/output pin	
	SWCLK	Input	Serial wire clock pin	
Interrupt	NMI	Input	Non-maskable interrupt request pin	
	IRQn	Input	Maskable interrupt request pins	
	IRQn-DS	Input	Maskable interrupt request pins that can also be used in Deep Software Standby mode	

1. Overview

RA4M3 Datasheet

引脚功能 1.5

Table 1.14 引脚功能(1of4)

Function	Signal	I/O	
电源	VCC	Input	
	VCL/VCL0	I/O	
	VSS	Input	:
	VBATT	Input	
Clock	XTAL	Output	
	EXTAL	Input	
	XCIN	Input	
	XCOUT	Output	- '
	CLKOUT	Output	1
操作模式控制	MD	Input	
系统控制	RES	Input	:
CAC	CACREF	Input	;
On-chip emulator	TMS	I/O	1
	TDI	Input	
	тск	Input	
	TDO	Output	
	TCLK	Output	
	TDATA0 to TDATA3	Output	
	SWO	Output	
	SWDIO	I/O	
	SWCLK	Input	
Interrupt	NMI	Input	1
	IRQn	Input	ŀ
	IRQn-DS	Input	

Description

电源引脚。将其连接到系统电源。通过一个0.1μF电容将此引脚连 接到VSS。电容应靠近引脚放置。

通过用于稳定内部电源的平滑电容器将此引脚连接到VSS引脚。将 电容器靠近引脚放置。

接地引脚。将其连接到系统电源(OV)。

电池备用电源引脚

晶体谐振器的引脚。外部时钟信号可以通过EXTAL引脚输入。

副时钟振荡器的输入输出引脚。在XCOUT和XCIN之间连接一个 晶体谐振器。

时钟输出引脚

用于设置操作模式的引脚。在从复位状态释放的操作模式转换期间 ,不得更改此引脚上的信号电平。

复位信号输入引脚。当该信号变低时,MCU进入复位状态。

测量参考时钟输入引脚

片上仿真器或边界扫描引脚

用于与跟踪数据同步的输出时钟

跟踪数据输出

串行线迹输出引脚

串行线调试数据输入输出引脚

串行线时钟引脚

不可屏蔽中断请求引脚

可屏蔽中断请求引脚

可屏蔽中断请求引脚,也可用于Deep 软件待机模式

Т

1. Overview

RA4M3 Datasheet

Table 1.14 引脚功能(2of4)

Function	Signal	I/O	Description		
GPT	GTETRGA, GTETRGB, GTETRGC, GTETRGD	Input	外部触发输入引脚		
	GTIOCnA, GTIOCnB	I/O	输入捕捉、输出比较或PWM输出引脚		
	GTIU	Input	霍尔传感器输入引脚U		
	GTIV	Input	霍尔传感器输入引脚V		
	GTIW	Input	霍尔传感器输入引脚W		
	GTOUUP	Output	用于BLDC电机控制的3相PWM输出(正U相)		
	GTOULO	Output	用于BLDC电机控制的3相PWM输出(负U相)		
	GTOVUP	Output	用于BLDC电机控制的3相PWM输出(正V相)		
	GTOVLO	Output	用于BLDC电机控制的3相PWM输出(负V相)		
	GTOWUP	Output	用于BLDC电机控制的3相PWM输出(正W相)		
	GTOWLO	Output	用于BLDC电机控制的3相PWM输出(负W相)		
AGT	AGTEEn	Input	外部事件输入使能信号		
	AGTIOn	I/O	外部事件输入和脉冲输出引脚		
	AGTOn	Output	脉冲输出引脚		
	AGTOAn	AGTOAn Output 输出比较匹配A输出引脚			
	AGTOBn	Output	输出比较匹配B输出引脚		
RTC	RTCOUT	Output	用于1Hz或64Hz时钟的输出引脚		
	RTCICn	Input	时间捕捉事件输入引脚		
SCI	SCKn	I/O	时钟输入输出引脚(时钟同步模式)		
	RXDn	Input	接收数据的输入引脚(异步模式时钟同步模式)		
	TXDn	Output	传输数据的输出引脚(异步模式时钟同步模式)		
	CTSn_RTSn	I/O	输入输出引脚用于控制发送和接收的开始(异步模式时钟同步模式),低电平有效。		
	CTSn	Input	开始传输的输入。		
	SCLn	I/O	IIC时钟的输入输出引脚(简单IIC模式)		
	SDAn	I/O	IIC数据的输入输出引脚(简单IIC模式)		
	SCKn	I/O	时钟输入输出引脚(简单SPI模式)		
	MISOn	I/O	用于从机传输数据的输入输出引脚(简单SPI模式)		
	MOSIn	I/O	输入输出引脚用于主数据传输(简单SPI模式)		
	SSn	Input			
	RXDXn	Input	接收数据的输入引脚(扩展串行模式)		
	TXDXn	Output	传输数据的输出引脚(扩展串行模式)		
	SIOXn	I/O	用于接收或传输数据的输入输出引脚(扩展串行 Mode)		
IIC	SCLn	I/O	时钟的输入输出引脚		
	SDAn	1/0			

Eurotion	Signal	1/0	Description
		Input	External triager input nine
GPT	GTETRGA, GTETRGB, GTETRGC, GTETRGD	Input	External trigger input pins
	GTIOCnA, GTIOCnB	I/O	Input capture, output compare, or PWM output pins
	GTIU	Input	Hall sensor input pin U
	GTIV	Input	Hall sensor input pin V
	GTIW	Input	Hall sensor input pin W
	GTOUUP	Output	3-phase PWM output for BLDC motor control (positive U phase)
	GTOULO	Output	3-phase PWM output for BLDC motor control (negative U phase)
	GTOVUP	Output	3-phase PWM output for BLDC motor control (positive V phase)
	GTOVLO	Output	3-phase PWM output for BLDC motor control (negative V phase)
	GTOWUP	Output	3-phase PWM output for BLDC motor control (positive W phase)
	GTOWLO	Output	3-phase PWM output for BLDC motor control (negative W phase)
AGT	AGTEEn	Input	External event input enable signals
	AGTIOn	I/O	External event input and pulse output pins
	AGTOn	Output	Pulse output pins
	AGTOAn	Output	Output compare match A output pins
	AGTOBn	Output	Output compare match B output pins
RTC	RTCOUT	Output	Output pin for 1-Hz or 64-Hz clock
	RTCICn	Input	Time capture event input pins
SCI	SCKn	I/O	Input/output pins for the clock (clock synchronous mode)
	RXDn	Input	Input pins for received data (asynchronous mode/clock synchronous mode)
	TXDn	Output	Output pins for transmitted data (asynchronous mode/clock synchronous mode)
	CTSn_RTSn	I/O	Input/output pins for controlling the start of transmission and reception (asynchronous mode/clock synchronous mode), active-low.
	CTSn	Input	Input for the start of transmission.
	SCLn	I/O	Input/output pins for the IIC clock (simple IIC mode)
	SDAn	I/O	Input/output pins for the IIC data (simple IIC mode)
	SCKn	I/O	Input/output pins for the clock (simple SPI mode)
	MISOn	I/O	Input/output pins for slave transmission of data (simple SPI mode)
	MOSIn	I/O	Input/output pins for master transmission of data (simple SPI mode)
	SSn	Input	Chip-select input pins (simple SPI mode), active-low
	RXDXn	Input	Input pins for received data (Extended Serial Mode)
	TXDXn	Output	Output pins for transmitted data (Extended Serial Mode)
	SIOXn	I/O	Input/output pins for receivde or tramsmitted data (Extended Serial Mode)
IIC	SCLn	I/O	Input/output pins for the clock
	SDAn	I/O	Input/output pins for data

1. Overview

RA4M3 Datasheet

Table 1.14 引脚功能(3of4)

Function	Signal	I/O	Description
SPI	RSPCKA	I/O	时钟输入输出引脚
	MOSIA	I/O	用于从主机输出数据的输入或输出引脚
	MISOA	I/O	从机数据输出的输入或输出引脚
	SSLA0	I/O	从机选择的输入或输出引脚
	SSLA1 to SSLA3	Output	从机选择的输出引脚
CAN	CRXn	Input	接收数据
	CTXn	Output	传输数据
USBFS	VCC_USB	Input	电源引脚
	VSS_USB	Input	接地引脚
	USB_DP	I/O	USB片上收发器的D+引脚。将此引脚连接到USB总线的D+引脚。
	USB_DM	I/O	USB片上收发器的Dpin。将此引脚连接到USB总线的Dpin。
	USB_VBUS	Input	USB电缆连接监视器引脚。将此引脚连接到USB总线的VBUS。当USB 模块作为功能控制器运行时,可以检测VBUS引脚状态(连接或断开)。
	USB_EXICEN	Output	用于外部电源(OTG)芯片的低功耗控制信号
	USB_VBUSEN	Output	VBUS(5V)为外部供电芯片供电使能信号
	USB_OVRCURA, USB_OVRCURB	Input	将外部过电流检测信号连接到这些引脚。 连接OTG电源芯片时,将VBUS比较器信号连接到这些引脚。
	USB_OVRCURA-DS, USB_OVRCURB-DS	Input	也可在DeepSoftware中使用的USBFS过流引脚 待机模式。 将外部过电流检测信号连接到这些引脚。 连接OTG电源芯片时,将VBUS比较器信号连接到这些引脚。
	USB_ID	Input	在OTG模式下运行期间,将MicroAB连接器ID输入信号连接到此 引脚
QSPI	QSPCLK	Output	QSPI时钟输出引脚
	QSSL	Output	QSPI从机输出引脚
	QIO0 to QIO3	I/O	Data0 to Data3
SSIE	SSIBCK0	I/O	SSIE串行位时钟引脚
	SSILRCK0/SSIFS0	I/O	LR时钟帧同步管脚
	SSITXD0	Output	串行数据输出引脚
	SSIRXD0	Input	串行数据输入引脚
	SSIDATA0	I/O	串行数据输入输出引脚
	AUDIO_CLK	Input	音频外部时钟引脚(输入过采样时钟)
SDHI/MMC	SDOCLK	Output	SD时钟输出引脚
	SD0CMD	I/O	命令输出引脚和响应输入信号引脚
	SD0DAT0 to SD0DAT7	I/O	SD和MMC数据总线引脚
	SD0CD	Input	SD卡检测引脚
	SDOWP	Input	SD write-protect signals

Function	Signal	I/O	Description
SPI	RSPCKA	I/O	Clock input/output pin
	MOSIA	I/O	Input or output pins for data output from the master
	MISOA	I/O	Input or output pins for data output from the slave
	SSLA0	I/O	Input or output pin for slave selection
	SSLA1 to SSLA3	Output	Output pins for slave selection
CAN	CRXn	Input	Receive data
	CTXn	Output	Transmit data
USBFS	VCC_USB	Input	Power supply pin
	VSS_USB	Input	Ground pin
	USB_DP	I/O	D+ pin of the USB on-chip transceiver. Connect this pin to the D+ pin of the USB bus.
	USB_DM	I/O	D- pin of the USB on-chip transceiver. Connect this pin to the D- pin of the USB bus.
	USB_VBUS	Input	USB cable connection monitor pin. Connect this pin to VBUS of the USB bus. The VBUS pin status (connected or disconnected) can be detected when the USB module is operating as a function controller.
	USB_EXICEN	Output	Low-power control signal for external power supply (OTG) chip
	USB_VBUSEN	Output	VBUS (5 V) supply enable signal for external power supply chip
	USB_OVRCURA, USB_OVRCURB	Input	Connect the external overcurrent detection signals to these pins. Connect the VBUS comparator signals to these pins when the OTG power supply chip is connected.
	USB_OVRCURA-DS, USB_OVRCURB-DS	Input	Overcurrent pins for USBFS that can also be used in Deep Software Standby mode. Connect the external overcurrent detection signals to these pins. Connect the VBUS comparator signals to these pins when the OTG power supply chip is connected.
	USB_ID	Input	Connect the MicroAB connector ID input signal to this pin during operation in OTG mode
QSPI	QSPCLK	Output	QSPI clock output pin
	QSSL	Output	QSPI slave output pin
	QIO0 to QIO3	I/O	Data0 to Data3
SSIE	SSIBCK0	I/O	SSIE serial bit clock pins
	SSILRCK0/SSIFS0	I/O	LR clock/frame synchronization pins
	SSITXD0	Output	Serial data output pin
	SSIRXD0	Input	Serial data input pin
	SSIDATA0	I/O	Serial data input/output pins
	AUDIO_CLK	Input	External clock pin for audio (input oversampling clock)
SDHI/MMC	SDOCLK	Output	SD clock output pins
	SD0CMD	I/O	Command output pin and response input signal pins
	SD0DAT0 to SD0DAT7	I/O	SD and MMC data bus pins
	SD0CD	Input	SD card detection pins
	SDOWP	Input	SD write-protect signals

Table 1.14 Pin functions (4 of 4)

Function	Signal	I/O	Description
Analog power supply	AVCC0	Input	Analog voltage supply pin. This is used as the analog power supply for the respective modules. Supply this pin with the same voltage as the VCC pin.
	AVSS0	Input	Analog ground pin. This is used as the analog ground for the respective modules. Supply this pin with the same voltage as the VSS pin.
	VREFH0	Input	Analog reference voltage supply pin for the ADC12 (unit 0). Connect this pin to AVCC0 when not using the ADC12 (unit 0).
	VREFL0	Input	Analog reference ground pin for the ADC12. Connect this pin to AVSS0 when not using the ADC12 (unit 0).
	VREFH	Input	Analog reference voltage supply pin for the ADC12 (unit 1) and D/A Converter. Connect this pin to AVCC0 when not using the ADC12 (unit 1) and D/A Converter.
	VREFL	Input	Analog reference ground pin for the ADC12 and D/A Converter. Connect this pin to AVSS0 when not using the ADC12 (unit 1) and D/A Converter.
ADC12	ANmn	Input	Input pins for the analog signals to be processed by the A/D converter. (m: ADC unit number, n: pin number)
	ADTRGm	Input	Input pins for the external trigger signals that start the A/D conversion, active-low.
DAC12	DAn	Output	Output pins for the analog signals processed by the D/A converter.
CTSU	TSn	Input	Capacitive touch detection pins (touch pins)
	TSCAP	I/O	Secondary power supply pin for the touch driver
I/O ports	Pmn	I/O	General-purpose input/output pins (m: port number, n: pin number)
	P200	Input	General-purpose input pin

RA4M3 Datasheet

Table 1.14	引脚功能	(4个,	共4个)	
		,		

Function	Signal	I/O	1
模拟电源	AVCC0	Input	i (
	AVSS0	Input	1
	VREFH0	Input	ź
	VREFL0	Input	1
	VREFH	Input	1
	VREFL	Input	
ADC12	ANmn	Input	1
	ADTRGm	Input	ļ
DAC12	DAn	Output	1
CTSU	TSn	Input	
	TSCAP	I/O	ţ
I/O ports	Pmn	I/O	; I
	P200	Input	÷

1. Overview

Description

模拟电压电源引脚。这用作各个模块的模拟电源。为该引脚提供与V CC引脚相同的电压。

模拟接地引脚。这用作各个模块的模拟地。为该引脚提供与VSS 引脚相同的电压。

ADC12(单元0)的模拟参考电压电源引脚。不使用ADC12(单元0)时,将此引脚连接到AVCC0。

ADC12的模拟参考接地引脚。将此引脚连接到 不使用ADC12(单元0)时的AVSSO。

ADC12(单元1)和DA的模拟参考电压电源引脚 转换器。不使用ADC12(单元1)和DA转换器时,将此引脚连接 到AVCC0。

ADC12和DA转换器的模拟参考接地引脚。 不使用ADC12(单元1)时将此引脚连接到AVSSO,并且 D/A Converter.

AD转换器要处理的模拟信号的输入引脚。(m: ADC单元编 号,n:引脚编号)

用于启动AD转换的外部触发信号的输入引脚,低电平有效

由数模转换器处理的模拟信号的输出引脚。

电容式触摸检测引脚(触摸引脚)

触摸驱动器的辅助电源引脚

通用输入输出引脚(m:端口号, n: 引脚号)

通用输入引脚

1. Overview

RA4M3 Datasheet

Figure 1.3 Pin assignment for LQFP 144-pin

R01DS0368EJ0120 Rev.1.20

Dec 2, 2020

RA4M3 Datasheet

Pin Lists 1.7

Table 1.15 Pin list (1 of 4)

LPQFP144	LPQFP100	LPQFP64	Power, System, Clock, Debug, CAC	I/O ports	Ex. Interrupt	SCI/IIC/SPI/CAN/USBFS/QSPI/SSIE/SDHI/MMC	GPT/AGT/RTC	ADC12/DAC12	CTSU
1	1	1	_	P400	IRQ0	SCK4/SCL0 A/AUDIO CLK	GTIOC6A/AGTIO1	ADTRG1	_
2	2	2	_	P401	IRQ5-DS	CTS4_RTS4/SS4/SDA0_A/CTX0	GTETRGA/GTIOC6B	_	_
3	3	3	CACREF	P402	IRQ4-DS	CTS4/CRX0/AUDIO_CLK	AGTIO0/AGTIO1/AGTIO2/AGTIO3/ RTCIC0	-	-
4	4	-	_	P403	IRQ14-DS	SSIBCK0_A	GTIOC3A/AGTIO0/AGTIO1/AGTIO2/ AGTIO3/RTCIC1	-	-
5	5	-	_	P404	IRQ15-DS	SSILRCK0/SSIFS0_A	GTIOC3B/AGTIO0/AGTIO1/AGTIO2/ AGTIO3/RTCIC2	-	-
6	6	-	_	P405	-	SSITXD0_A	GTIOC1A	-	-
7	7	-	_	P406	-	SSLA3_C/SSIRXD0_A	GTIOC1B/AGTO5	-	-
8	-	-	_	P700	-	MISOA_C	GTIOC5A/AGTO4	-	-
9	-	-	_	P701	_	MOSIA_C	GTIOC5B/AGTO3	-	-
10	-	-	_	P702	-	RSPCKA_C	GTIOC6A/AGTO2	-	-
11	-	-	_	P703	-	SSLA0_C	GTIOC6B/AGTO1	-	-
12	-	-	_	P704	-	SSLA1_C/CTX0	AGTO0	-	-
13	-	-	_	P705	_	CTS3/SSLA2_C/CRX0	AGTIO0	-	-
14	8	4	VBATT	-	_	_	-	-	-
15	9	5	VCL0	-	_	_	-	-	-
16	10	6	XCIN	-	_	_	-	-	-
17	11	7	XCOUT	-	_	_	-	-	-
18	12	8	VSS	-	_	_	-	-	-
19	13	9	XTAL	P213	IRQ2	TXD1/MOSI1/SDA1/TXDX1/SIOX1	GTETRGC/GTIOC0A/AGTEE2	ADTRG1	-
20	14	10	EXTAL	P212	IRQ3	RXD1/MISO1/SCL1/RXDX1	GTETRGD/GTIOC0B/AGTEE1	-	-
21	15	11	VCC	-	-	-	-	-	-
22	-	-	_	P713	_	_	GTIOC2A/AGTOA0	-	TS17
23	-	-	_	P712	-	-	GTIOC2B/AGTOB0	-	TS16
24	-	-	_	P711	-	CTS1_RTS1/SS1	AGTEE0	-	TS15
25	-	-	_	P710	-	SCK1	-	-	TS14
26	-	-	_	P709	IRQ10	TXD1/MOSI1/SDA1/TXDX1/SIOX1	-	-	TS13
27	16	-	CACREF	P708	IRQ11	RXD1/MISO1/SCL1/RXDX1/AUDIO_CLK	-	-	TS12
28	17	-	_	P415	IRQ8	USB_VBUSEN/SD0CD	GTIOC0A/AGTIO4	-	TS11
29	18	-	_	P414	IRQ9	CTS0/SD0WP	GTIOC0B/AGTIO5	-	TS10
30	19	-	_	P413	_	CTS0_RTS0/SSL0/SD0CLK_A	GTOUUP/AGTEE3	-	TS09
31	20	-	_	P412	_	SCK0/CTS3/SD0CMD_A	GTOULO/AGTEE1	-	TS08
32	21	12	_	P411	IRQ4	TXD0/MOSI0/SDA0/CTS3_RTS3/SS3/SD0DAT0_A	GTOVUP/AGTOA1	-	TS07
33	22	13	_	P410	IRQ5	RXD0/MISO0/SCL0/SCK3/SD0DAT1_A	GTOVLO/AGTOB1	_	TS06
34	23	14	_	P409	IRQ6	TXD3/MOSI3/SDA3/USB_EXICEN	GTOWUP/AGTOA2	-	TS05
35	24	15	_	P408	IRQ7	CTS4/RXD3/MISO3/SCL3/SCL0_B/USB_ID	GTOWLO/GTIOC6B/AGTOB2	-	TS04
36	25	16	_	P407	_	CTS4_RTS4/SS4/SDA0_B/SSLA3_A/USB_VBUS	GTIOC6A/AGTIO0/RTCOUT	ADTRG0	TS03
37	26	17	VSS_USB	-	_	_	-	-	-
38	27	18	USB_DM	-	_	_	-	-	-
39	28	19	USB_DP	-	_	_	-	-	-
40	29	20	VCC_USB	-	-	_	-	-	-
41	30	21	_	P207	_	TXD4/MOSI4/SDA4/SSLA2_A/QSSL		-	TSCAP
42	31	22	_	P206	IRQ0-DS	RXD4/MISO4/SCL4/CTS9/SDA1_B/SSLA1_A/ USB_VBUSEN/SSIDATA0_C/SD0DAT2_A	GTIU	-	TS02
43	32	23	CLKOUT	P205	IRQ1-DS	TXD4/MOSI4/SDA4/CTS9_RTS9/SS9/SCL1_B/SSLA0_A/ USB_OVRCURA-DS/SSILRCK0/SSIFS0_C/SD0DAT3_A	GTIV/GTIOC4A/AGTO1	-	TS01
44	-	-	CACREF	P204	-	SCK4/SCK9/RSPCKA_A/USB_OVRCURB-DS/ SSIBCK0_C/SD0DAT4_A	GTIW/GTIOC4B/AGTIO1	-	TS00

1. Overview

RA4M3 Datasheet

引脚列表 1.7

Table 1.15 ^{引脚列表 (4个中的1个)}

LPQFP144	LPQFP100	LPQFP64	电源、系统、时 钟、调试、 CAC	I/O ports	前任。打断	SCI/IIC/SPI/CAN/USBES/OSPI/SSIE/SDHI/MMC	GPT/AGT/RTC	ADC12/DAC12	CTSU
1	1	1	_	P400	IROO		GTIOC64/AGTIO1	ADTRG1	_
2	2	2		P401	IRO5-DS		GTETRGA/GTIOC6B		<u> </u>
3	3	3	CACREF	P402	IRQ4-DS		AGTIO0/AGTIO1/AGTIO2/AGTIO3/	_	_
Ľ	Ľ	Ľ					RTCICO		
4	4	-	-	P403	IRQ14-DS	SSIBCK0_A	GTIOC3A/AGTIO0/AGTIO1/AGTIO2/ AGTIO3/RTCIC1	-	-
5	5	-	-	P404	IRQ15-DS	SSILRCK0/SSIFS0_A	GTIOC3B/AGTIO0/AGTIO1/AGTIO2/ AGTIO3/RTCIC2	-	-
6	6	-	_	P405	-	SSITXD0_A	GTIOC1A	_	-
7	7	-	_	P406	-	SSLA3_C/SSIRXD0_A	GTIOC1B/AGTO5	_	-
8	-	-	_	P700	-	MISOA_C	GTIOC5A/AGTO4	_	-
9	-	-	_	P701	-	MOSIA_C	GTIOC5B/AGTO3	_	-
10	-	-	—	P702	-	RSPCKA_C	GTIOC6A/AGTO2	-	-
11	-	-	—	P703	-	SSLA0_C	GTIOC6B/AGTO1	-	-
12	-	-	_	P704	-	SSLA1_C/CTX0	AGTO0	-	-
13	-	-	_	P705	-	CTS3/SSLA2_C/CRX0	AGTIO0	_	-
14	8	4	VBATT	-	-	-	-	-	-
15	9	5	VCL0	-	-	-	-	-	-
16	10	6	XCIN	-	-	-	-	-	-
17	11	7	XCOUT	-	-	-	-	_	-
18	12	8	VSS	-	-	-	-	-	-
19	13	9	XTAL	P213	IRQ2	TXD1/MOSI1/SDA1/TXDX1/SIOX1	GTETRGC/GTIOC0A/AGTEE2	ADTRG1	-
20	14	10	EXTAL	P212	IRQ3	RXD1/MISO1/SCL1/RXDX1	GTETRGD/GTIOC0B/AGTEE1	-	-
21	15	11	VCC	-	-	-	-	-	-
22	-	-	_	P713	-	-	GTIOC2A/AGTOA0	-	TS17
23	-	-	_	P712	-	-	GTIOC2B/AGTOB0	-	TS16
24	-	-	_	P711	-	CTS1_RTS1/SS1	AGTEE0	-	TS15
25	-	-	_	P710	-	SCK1	-	-	TS14
26	-	-	_	P709	IRQ10	TXD1/MOSI1/SDA1/TXDX1/SIOX1	-	-	TS13
27	16	-	CACREF	P708	IRQ11	RXD1/MISO1/SCL1/RXDX1/AUDIO_CLK	-	-	TS12
28	17	-	-	P415	IRQ8	USB_VBUSEN/SD0CD	GTIOC0A/AGTIO4	-	TS11
29	18	-	-	P414	IRQ9	CTS0/SD0WP	GTIOC0B/AGTIO5	-	TS10
30	19	-	_	P413	-	CTS0_RTS0/SSL0/SD0CLK_A	GTOUUP/AGTEE3	-	TS09
31	20	-	_	P412	-	SCK0/CTS3/SD0CMD_A	GTOULO/AGTEE1	-	TS08
32	21	12	_	P411	IRQ4	TXD0/MOSI0/SDA0/CTS3_RTS3/SS3/SD0DAT0_A	GTOVUP/AGTOA1	-	TS07
33	22	13	_	P410	IRQ5	RXD0/MISO0/SCL0/SCK3/SD0DAT1_A	GTOVLO/AGTOB1	-	TS06
34	23	14	-	P409	IRQ6	TXD3/MOSI3/SDA3/USB_EXICEN	GTOWUP/AGTOA2	-	TS05
35	24	15	_	P408	IRQ7	CTS4/RXD3/MISO3/SCL3/SCL0_B/USB_ID	GTOWLO/GTIOC6B/AGTOB2	-	TS04
36	25	16	-	P407	-	CTS4_RTS4/SS4/SDA0_B/SSLA3_A/USB_VBUS	GTIOC6A/AGTIO0/RTCOUT	ADTRG0	TS03
37	26	17	VSS_USB	-	-	-	-	-	-
38	27	18	USB_DM	-	-	-	-	-	-
39	28	19	USB_DP	-	-	-	-	-	-
40	29	20	VCC_USB	-	-	-	-	-	-
41	30	21	_	P207	-	TXD4/MOSI4/SDA4/SSLA2_A/QSSL	-	-	TSCAP
42	31	22	-	P206	IRQ0-DS	RXD4/MISO4/SCL4/CTS9/SDA1_B/SSLA1_A/ USB_VBUSEN/SSIDATA0_C/SD0DAT2_A	GTIU	-	TS02
43	32	23	CLKOUT	P205	IRQ1-DS	TXD4/MOSI4/SDA4/CTS9_RTS9/SS9/SCL1_B/SSLA0_A/ USB_OVRCURA-DS/SSILRCK0/SSIFS0_C/SD0DAT3_A	GTIV/GTIOC4A/AGTO1	-	TS01
44	-	-	CACREF	P204	-	SCK4/SCK9/RSPCKA_A/USB_OVRCURB-DS/ SSIBCK0_C/SD0DAT4_A	GTIW/GTIOC4B/AGTIO1	-	TS00
-		•				•	•	•	

R01DS0368EJ0120 Rev.1.20 Dec 2, 2020

Page 15 of 92

_

-

– – vss

52 35 — TDATA1

54 37 24 TDATA3

55 38 25 RES 56 39 26 MD

57 40 27

_

63 41

64 42

65 43

67 45

68 46

66 44 28

69 47 29

70 48 30

71 49 31

58

59 _ _

60

62

_ TDATA2

_ _

_ _ 61 —

_

_

_

– vss

- vcc

72 50 32 TCK/SWCLK

73 51 33 TMS/SWDIO

_

_ _

_

_

90 62 39 VCC 91 63 40 VSS

92 64 41 VCL

_ | _

– vcc

VSS

CACREF/CLKOUT

75 53 35 TDI

76 54 36

77 55 37

78 56 38

_ 83 59

79 57

80 58

81 _

82

84 60

85 61

86

87 _ _

88

89

74 52 34 TDO/SWO/CLKOUT P109

– Vcc

- TCLK

TDATA0

_

_

LPQFP144

45

46

47

48

49

50 33

51 34

53 36

Pin list (2 of 4) Table 1.15

I/O

ports

P203

P202

P313

_

P214

P211

P210

P209

P208

P201

P200

P312

P311

P310

P309

P308

P307

P306

P305

P304

P303

P301

P300

P108

P110

P111

P112

P113

P114

P115

P608

P609

P610

P611

P612

P613

P614

_

_

P302 IRQ5

IRQ6

IRQ3

IRQ4

IRQ8

IRQ9

NMI

Ex. Interrupt

SD0DAT5_A

SD0DAT7_A

QSPCLK/SD0CLK_B

QIQ0/SD0CMD B

QIO3/SD0DAT0_B

CTS3 RTS3/SS3

TXD3/MOSI3/SDA3/QIO3

RXD3/MISO3/SCL3/QIO2

TXD2/MOSI2/SDA2/TXDX2/SIOX2/SSLA3_B

RXD2/MISO2/SCL2/RXDX2/CTS9 RTS9/SS9/SSLA2 B

CTS2_RTS2/SS2/RXD9/MISO9/SCL9/MISOA_B/CRX1

TXD2/MOSI2/SDA2/TXDX2/SIOX2/SCK1/SSLA0_B/QSSL/ SSIBCK0_B

RXD2/MISO2/SCL2/RXDX2/SSILRCK0/SSIFS0_B

SCK3

CTS3/QIO1

Q100

QSSL

QSPCLK

CTS9

SSLA1_B

CTS9_RTS9/SS9/SSLA0_B

SCK2/SCK9/RSPCKA_B

CTS9/SSIRXD0_B

SSITXD0_B

CTX1

CRX1

_

_

TXD9/MOSI9/SDA9/MOSIA B/CTX1

QIO1/SD0CD

QIO2/SD0WP

IRQ2-DS

IRQ3-DS

SCI/IIC/SPI/CAN/USBFS/QSPI/SSIE/SDHI/MMC

CTS2 RTS2/SS2/TXD9/MOSI9/SDA9/MOSIA A/CTX0/

SCK2/RXD9/MISO9/SCL9/MISOA_A/CRX0/SD0DAT6_A

GPT/AGT/RTC

GTIOC5A/AGTOA3

GTIOC5B/AGTOB3

GTIU/AGTO5

GTIV/AGTOA5

GTIW/AGTOB5

GTOVLO

AGTOA1

AGTOB1

AGTEE1

AGTOA4

AGTOB4

GTIOC7B

GTOUUP_D/AGTEE4

GTOULO D/AGTOA2

GTOWLO/GTIOC7A/AGTEE2

GTOULO/GTIOC4B/AGTIO0

GTOULO/GTIOC0B/AGTOA3

GTOVUP/GTIOC1A/AGTOB3

GTOVLO/GTIOC1B/AGTEE3

GTOWUP/AGTOB2

GTOUUP/GTIOC4A

GTOUUP/GTIOC0A

GTIOC3A/AGTOA5

GTIOC3B/AGTOB5

GTIOC2A/AGTEE5

GTIOC2B/AGTIO5

GTIOC4A

GTIOC4B

AGTO3

AGTO2

AGTO1

AGTO0

GTIOC5A/AGTO5

GTIOC5B/AGTO4

GTOVUP/AGTEE5

 8
 4

 4
 4

 0
 0

 0
 0

 1
 1

 0
 CAC

1. Overview

ADC12/DAC12 CTSU

TS18

TS19

_

_

_

_

_

_

_

_

_

_ _ _ _

_

_

_

_

_

_

_

_

_

_

_

_

_

_

_

_

RA4M3 Datasheet

引脚列表(2个,共4个) Table 1.15

	-uo	•			_					
	LPQFP144	LPQFP100	LPQFP64	电源、系统、时 钟、调试、 CAC	I/O ports	前任。打断	SCI/IIC/SPI/CAN/USBFS/QSPI/SSIE/SDHI/MMC	GPT/AGT/RTC	ADC12/DAC12	стѕи
	45	-	-	-	P203	IRQ2-DS	CTS2_RTS2/SS2/TXD9/MOSI9/SDA9/MOSIA_A/CTX0/ SD0DAT5_A	GTIOC5A/AGTOA3	—	TS18
	46	_	_	_	P202	IRQ3-DS	SCK2/RXD9/MISO9/SCL9/MISOA_A/CRX0/SD0DAT6_A	GTIOC5B/AGTOB3	_	TS19
	47	_	_	_	P313	_	SD0DAT7_A	_	_	_
	48	_	_	VSS	_	_	_	_	_	_
	49	_	_	VCC	_	_	_	_	_	_
	50	33	_	TCLK	P214	_	QSPCLK/SD0CLK_B	GTIU/AGTO5	_	_
	51	34	_	TDATA0	P211	_	QIO0/SD0CMD_B	GTIV/AGTOA5	_	_
	52	35	_	TDATA1	P210	_	QIO1/SD0CD	GTIW/AGTOB5	_	_
	53	36	_	TDATA2	P209	_	QIO2/SD0WP	GTOVUP/AGTEE5	_	-
	54	37	24	TDATA3	P208	_	QIO3/SD0DAT0_B	GTOVLO	_	_
	55	38	25	RES	_	_	_	-	_	_
	56	39	26	MD	P201	-	_	_	-	_
	57	40	27	_	P200	NMI	_	_	_	-
	58	-	-	_	P312	_	CTS3_RTS3/SS3	AGTOA1	_	-
	59	-	-	_	P311	_	SCK3	AGTOB1	_	-
	60	-	-	_	P310	_	TXD3/MOSI3/SDA3/QIO3	AGTEE1	_	-
	61	-	-	_	P309	_	RXD3/MISO3/SCL3/QIO2	AGTOA4	_	_
	62	_	_	_	P308	_	CTS3/QIO1	AGTOB4	_	_
	63	41	_	_	P307	_	Q100	GTOUUP_D/AGTEE4	_	_
1	64	42	_	_	P306	_	QSSL	GTOULO_D/AGTOA2	_	_
	65	43	_	_	P305	IRQ8	QSPCLK	GTOWUP/AGTOB2	_	_
	66	44	28	_	P304	IRQ9	_	GTOWLO/GTIOC7A/AGTEE2	_	_
	67	45	-	VSS	_	_	_	_	_	_
	68	46	_	VCC	_	_	_	-	_	_
	69	47	29	_	P303	_	CTS9	GTIOC7B	_	_
	70	48	30	_	P302	IRQ5	TXD2/MOSI2/SDA2/TXDX2/SIOX2/SSLA3_B	GTOUUP/GTIOC4A	_	_
	71	49	31	_	P301	IRQ6	RXD2/MISO2/SCL2/RXDX2/CTS9_RTS9/SS9/SSLA2_B	GTOULO/GTIOC4B/AGTIO0	-	_
	72	50	32	TCK/SWCLK	P300	-	SSLA1_B	GTOUUP/GTIOC0A	-	_
	73	51	33	TMS/SWDIO	P108	-	CTS9_RTS9/SS9/SSLA0_B	GTOULO/GTIOC0B/AGTOA3	-	_
	74	52	34	TDO/SWO/CLKOUT	P109	-	TXD9/MOSI9/SDA9/MOSIA_B/CTX1	GTOVUP/GTIOC1A/AGTOB3	-	_
	75	53	35	TDI	P110	IRQ3	CTS2_RTS2/SS2/RXD9/MISO9/SCL9/MISOA_B/CRX1	GTOVLO/GTIOC1B/AGTEE3	-	_
	76	54	36	_	P111	IRQ4	SCK2/SCK9/RSPCKA_B	GTIOC3A/AGTOA5	-	-
	77	55	37	_	P112	-	TXD2/MOSI2/SDA2/TXDX2/SIOX2/SCK1/SSLA0_B/QSSL/ SSIBCK0_B	GTIOC3B/AGTOB5	-	-
	78	56	38	_	P113	-	RXD2/MISO2/SCL2/RXDX2/SSILRCK0/SSIFS0_B	GTIOC2A/AGTEE5	-	—
	79	57	-	—	P114	-	CTS9/SSIRXD0_B	GTIOC2B/AGTIO5	-	-
	80	58	-	_	P115	-	SSITXD0_B	GTIOC4A	_	—
	81	-	-	VCC	-	-	-	-	-	-
	82	-	-	VSS	-	-	-	-	-	—
	83	59	-	_	P608	-	-	GTIOC4B	-	—
	84	60	-	_	P609	-	CTX1	GTIOC5A/AGTO5	-	-
	85	61	-	_	P610	-	CRX1	GTIOC5B/AGTO4	-	-
	86	-	-	CACREF/CLKOUT	P611	-	-	AGTO3	-	-
	87	-	-	-	P612	-	-	AGTO2	-	-
	88	—	-	-	P613	-	-	AGTO1	_	_
	89	-	-	-	P614	-	-	AGTO0	_	_
	90	62	39	VCC	-	-	_	-	-	_
	91	63	40	VSS	-	-	-	-	-	_
	92	64	41	VCL	-	-	-	-	-	_

R01DS0368EJ0120	Rev.1.20
Dec 2, 2020	

Page 16 of 92

Table 1.15 Pin list (3 of 4)

1. Overview

RA4M3 Datasheet

Tabla 1 15 引脚列表(4个中的3个)

LPQFP144	LPQFP100	LPQFP64	电源、系统、时 钟、调试、 CAC	I/O ports	前任。打断	SCI/IIC/SPI/CAN/USBFS/QSPI/SSIE/SDHI/MMC	GPT/AGT/RTC	ADC12/DAC12	стѕи
93	-	—	_	P605	_	_	AGTO4	_	-
94	_	_	_	P604	_	CTS9	AGTEE4	_	_
95	_	_	_	P603	_	CTS9_RTS9/SS9	GTIOC7A/AGTIO4	_	_
96	65	_	_	P602	_	TXD9/MOSI9/SDA9	GTIOC7B/AGTO3	_	_
97	66	_	_	P601	_	RXD9/MISO9/SCL9	GTIOC6A/AGTEE3	_	_
98	67	_	CACREF/CLKOUT	P600	_	SCK9	GTIOC6B/AGTIO3	_	_
99	_	_	VCC	_	_	_	_	_	_
100	_	_	VSS	-	_	_	_	_	_
101	68	_	_	P107	_	_	AGTOA0	_	_
102	69	42	_	P106	_	_	AGTOB0	_	_
103	70	43	_	P105	IRQ0	_	GTETRGA/GTIOC1A/AGTO2	_	_
104	71	44	_	P104	IRQ1	QIO2	GTETRGB/GTIOC1B/AGTEE2	_	_
105	72	45	_	P103	_	CTS0 RTS0/SS0/CTX0/QIO3	GTOWUP/GTIOC2A/AGTIO2	_	_
106	73	46	_	P102	_	 SCK0/CRX0/QIO0	GTOWLO/GTIOC2B/AGTO0	ADTRG0	_
107	74	47	_	P101	IRQ1	TXD0/MOSI0/SDA0/CTS1 RTS1/SS1/QIO1	GTETRGB/GTIOC5A/AGTEE0	_	_
108	75	48	_	P100	IRQ2	RXD0/MISO0/SCL0/SCK1/QSPCLK	GTETRGA/GTIOC5B/AGTIO0	_	_
109	_	_	_	P800	_	CTS0	AGTOA4	_	_
110	_	_	_	P801	_		AGTOB4	_	_
111	_	_	VCC	_	_	_	_	_	_
112	_	_	VSS		_	_	_	_	_
113	76	49	CACREF	P500	_	USB VBUSEN/QSPCLK	GTIU/AGTOA0	AN116	_
114	77	_	_	P501	IRQ11	USB_OVRCURA/OSSL	GTIV/AGTOB0	AN117	_
115	78	_		P502	IRQ12		GTIW/AGTOA2	AN118	_
116	79	_		P503	_	USB_EXICEN/QIQ1	GTETRGC/AGTOB2	AN119	_
117	80	_		P504	_		GTETRGD/AGTOA3	AN120	_
118	81	_		P505	IRQ14	0103	AGTOB3	AN121	_
110	_	_		P506	IRO15	_	_	AN122	_
120		_		P507				_	_
120	-	-	-	F 307	-	_	-	_	_
121	02	51	Ves		-	_	-	_	_
122	0.0	52	100			_	-		_
123	04	52	_	P013	INQIS		-	AN013/DA1	_
124	00	55		P014	-		-	ANU IZ/DAU	_
120	00	54		-	-		-	-	_
120	07	55	AVCC0	-	-	_	-	_	_
127	00	50	AVCCU	-	-	_	-	-	_
120	09	57	AVSSU	-	-	_	-	-	-
129	90	50			-	_	-	_	_
130	51	39	VICEFIIO			_	-	-	_
122	02	_		P009	IRO12.09			AN008	
132	02	-	_	P007		L	_	AN007	_
133	93	_		P007		_	-	AN007	_
125	04 05	_		P005	IRO10.09			AN005	
130	90		— 	P003				AN004	
130	90	64		P004	1009-000		-		
13/	90	60		P003			-		_
138	98	62	-	P002		-	-	AN002/AN102	_
139	99	03	-	P001	1801-05	-	-	AN000/AN101	_
140	100	64	-	P000	IRQ6-DS	-	-	ANUUU/AN100	-
141	-	-	v55	-	-	-	-	-	-

LPQFP144	LPQFP100	8 4 4 Power, System, Clock, Debug, CAC I/O ports Ex. Interrupt		Ex. Interrupt	SCI/IIC/SPI/CAN/USBFS/QSPI/SSIE/SDHI/MMC	GPT/AGT/RTC	ADC12/DAC12	стѕи	
93	_	_	_	P605	_		AGTO4	_	-
94	_	_	_	P604	_	CTS9	AGTEE4	_	_
95	_	_	_	P603	_	CTS9 RTS9/SS9	GTIOC7A/AGTIO4	_	_
96	65	_	_	P602	_	TXD9/MOSI9/SDA9	GTIOC7B/AGTO3	_	-
97	66	_	_	P601	_	RXD9/MISO9/SCL9	GTIOC6A/AGTEE3	_	-
98	67	_	CACREF/CLKOUT	P600	_	SCK9	GTIOC6B/AGTIO3	_	
99	_	_	VCC	_	_		_	_	-
100	_	_	VSS		_		_	_	
101	68	_		P107	_		AGTOA0	_	_
102	69	42		P106	_		AGTOB0	_	_
102	70	42		P105	IROO			_	<u> </u>
104	70	40		P104		0102			
104	72	44		P104				_	
105	72	40		P 103	_				_
100	73	40	_	P 102	-			ADIRGU	-
107	74	47	-	P101	IRQ1		GTETRGB/GTIOC5A/AGTEEU	-	_
108	/5	48	-	P100	IRQ2	RXD0/MISO0/SCL0/SCK1/QSPCLK	GTETRGA/GTIOC5B/AGTIOU	-	-
109	-	-	-	P800	-	CTS0 AGTOA4 —		-	-
110	-	-	-	P801	_			-	-
111	-	-	VCC	-	-			-	-
112	-	-	VSS	-	-			-	-
113	76	49	CACREF	P500	-	USB_VBUSEN/QSPCLK GTIU/AGTOA0 A		AN116	-
114	77	-	-	P501	IRQ11	USB_OVRCURA/QSSL GTIV/AGTOB0		AN117	-
115	78	-	—	P502	IRQ12	USB_OVRCURB/QIO0 GTIW/AGTOA2		AN118	-
116	79	-	-	P503	-	USB_EXICEN/QIO1	GTETRGC/AGTOB2	AN119	-
117	80	-	-	P504	-	USB_ID/QIO2	GTETRGD/AGTOA3	AN120	-
118	81	-	-	P505	IRQ14	QIO3	AGTOB3	AN121	-
119	-	-	-	P506	IRQ15	_	-	AN122	-
120	-	-	_	P507	-	-	-	-	-
121	82	50	VCC	-	-	-	-	-	-
122	83	51	VSS	-	-	_	-	-	-
123	84	52	—	P015	IRQ13	_	-	AN013/DA1	-
124	85	53	_	P014	_	_	-	AN012/DA0	-
125	86	54	VREFL	-	—	_	-	_	-
126	87	55	VREFH	-	-	_	-	-	-
127	88	56	AVCC0	-	-	_	-	_	-
128	89	57	AVSS0	-	_	_	-	-	-
129	90	58	VREFL0	-	_	_	-	_	-
130	91	59	VREFH0	-	-	_	_	-	-
131	-	-	_	P009	IRQ13-DS	_	-	AN009	-
132	92	-	_	P008	IRQ12-DS		-	AN008	-
133	93	-	_	P007	_	-	-	AN007	-
134	94	-	_	P006	IRQ11-DS	_	-	AN006	-
135	95	-	_	P005	IRQ10-DS	_	-	AN005	-
136	96	60	_	P004	IRQ9-DS	_	_	AN004	-
137	97	61	_	P003	_	_		AN003	-
138	98	62	_	P002	IRQ8-DS			AN002/AN102	-
139	99	63	_	P001	IRQ7-DS		_	AN001/AN101	l
140	100	64	_	P000	IRQ6-DS			AN000/AN100	l
141	_	_	VSS	_	_			_	l
	1			1	1		1		4

1. Overview

RA4M3 Datasheet

Tabl	e 1.'	15	引脚列表(4个,共						
LPQFP144	LPQFP100	LPQFP64	电源、系统、时 钟、调试、 CAC	I/O ports	前任。打断	SCI/IIC/SPI/CAN/USBFS/QSPI/SSIE/SDHI/MMC	GPT/AGT/RTC	ADC12/DAC12	CTSU
142	-	-	VCC	-	-	_	-	-	
143	-	-	_	P512	IRQ14	TXD4/MOSI4/SDA4/SCL1_A/CTX1	GTIOC0A	-	-
144	_	-	_	P511	IRQ15	RXD4/MISO4/SCL4/SDA1_A/CRX1	GTIOC0B	_	_

Note: 几个引脚名称添加了_A、_B和_C的后缀。分配功能时可以忽略后缀。

Table 1.15 Pin list (4 of 4)

LPQFP144	8 4 Power, System, I/O 9 4 Power, System, I/O 0 0 Clock, Debug, ports 1 1 CAC ports		Ex. Interrupt	SCI/IIC/SPI/CAN/USBFS/QSPI/SSIE/SDHI/MMC	GPT/AGT/RTC	ADC12/DAC12	CTSU		
142	—	-	VCC	-	_	_	-	_	-
143	-	-	—	P512	IRQ14	TXD4/MOSI4/SDA4/SCL1_A/CTX1	GTIOC0A	-	-
144	_	—	_	P511	IRQ15	RXD4/MISO4/SCL4/SDA1_A/CRX1	GTIOC0B	-	-

Note: Several pin names have the added suffix of _A, _B, and _C. The suffix can be ignored when assigning functionality.

Supported peripheral functions and pins differ from one product name to another.

Unless otherwise specified, the electrical characteristics of the MCU are defined under the following conditions:

- VCC = AVCC0 = VCC USB = VBATT = 2.7 to 3.6 V
- $2.7 \leq VREFH0/VREFH \leq AVCC0$
- VSS = AVSS0 = VREFL0/VREFL = VSS USB = 0 V
- $T_a = T_{opr}$

Figure 2.1 shows the timing conditions.

Input or output timing measurement conditions Figure 2.1

The recommended measurement conditions for the timing specification of each peripheral provided are for the best peripheral operation. Make sure to adjust the driving abilities of each pin to meet your conditions.

2.1 Absolute Maximum Ratings

Table 2.1 Absolute maximum ratings

Parameter	Symbol	Value	Unit
Power supply voltage	VCC, VCC_USB ^{*2}	-0.3 to +4.0	V
VBATT power supply voltage	VBATT	-0.3 to +4.0	V
Input voltage (except for 5 V-tolerant ports*1)	V _{in}	-0.3 to VCC + 0.3	V
Input voltage (5 V-tolerant ports ^{*1})	V _{in}	-0.3 to + VCC + 4.0 (max. 5.8)	V
Reference power supply voltage	VREFH/VREFH0	-0.3 to VCC + 0.3	V
Analog power supply voltage	AVCC0*2	-0.3 to +4.0	V
Analog input voltage	V _{AN}	-0.3 to AVCC0 + 0.3	V
Operating temperature ^{*3 *4}	T _{opr}	-40 to +105	°C
Storage temperature	T _{stg}	-55 to +125	°C

Note 1. Ports P205, P206, P400, P401, P407 to P415, and P708 to P713 are 5 V tolerant.

Note 2. Connect AVCC0 and VCC_USB to VCC.

Note 3. See section 2.2.1. Tj/Ta Definition.

Note 4. Contact a Renesas Electronics sales office for information on derating operation when Ta = +85°C to +105°C. Derating is the systematic reduction of load for improved reliability.

RENESAS

2. Electrical Characteristics

RA4M3 Datasheet

电气特性 2.

支持的外围功能和引脚因产品名称而异。 除非另有规定,MCU的电气特性在以下条件下定义:

- VCC = AVCC0 = VCC USB = VBATT = 2.7 to 3.6 V
- $2.7 \leq VREFH0/VREFH \leq AVCC0$
- VSS = AVSS0 = VREFL0/VREFL = VSS USB = 0 V
- $T_a = T_{opr}$

图2.1显示了时序条件。

Figure 2.1

所提供的每个外设时序规范的推荐测量条件是为了实现最佳外设操作。确保调整每个引脚的驱动能力以满 足您的条件。

绝对最大额定值 2.1

Table 2.1 绝对最大额定值

Parameter	Symbol	Value	Unit
电源电压	VCC, VCC_USB*2	-0.3 to +4.0	V
VBATT电源电压	VBATT	-0.3 to +4.0	V
输入电压(5V容限端口*1除外)	V _{in}	-0.3 to VCC + 0.3	V
输入电压(5V耐压端口*1)	V _{in}	-0.3 to + VCC + 4.0 (max. 5.8)	V
参考电源电压	VREFH/VREFH0	-0.3 to VCC + 0.3	V
模拟电源电压	AVCC0*2	-0.3 to +4.0	V
模拟输入电压	V _{AN}	-0.3 to AVCC0 + 0.3	V
工作温度*3*4	T _{opr}	-40 to +105	°C
贮存温度	T _{stg}	-55 to +125	°C

注1.端口P205、P206、P400、P401、P407至P415和P708至P713可承受5V电压。 注2.将AVCCO和VCC_USB连接到VCC。

注3: 见第2.2.1节。TjTa定义。

注4.有关在Ta=+85℃至+105℃时降额运行的信息,请联系瑞萨电子销售办事处。降额是系统地减少负载以提高可靠性。

RA4M3 Datasheet

Caution: 如果超过绝对最大额定值,可能会对MCU造成永久性损坏。

Table 2.2 Recommended operating conditions

Parameter	Symbol	Value	Min	Тур	Max	Unit
Power supply voltages	VCC	When USB is not used	2.7	—	3.6	V
	When USB is used 3		3.0	_	3.6	V
	VSS		—	0	—	V
USB power supply voltages	VCC_USB	—	VCC	—	V	
	VSS_USB		—	0	—	V
VBATT power supply voltage	VBATT		1.8	—	3.6	V
Analog power supply voltages	AVCC0*1	_	VCC	_	V	
	AVSS0	—	0	—	V	

Caution: Permanent damage to the MCU might result if absolute maximum ratings are exceeded.

Note 1. Connect AVCC0 to VCC. When the A/D converter and the D/A converter are not in use, do not leave the AVCC0, VREFH/VREFH0, AVSS0, and VREFL/VREFL0 pins open. Connect the AVCC0 and VREFH/VREFH0 pins to VCC, and the AVSS0 and VREFL/ VREFL0 pins to VSS, respectively.

2.2 **DC** Characteristics

2.2.1 Tj/Ta Definition

Table 2.3 DC characteristics

Conditions: Products with operating temperature (T_a) -40 to +105°C

Parameter	Symbol	Тур	Мах	Unit	Test conditions
Permissible junction temperature	Tj	_	125	°C	High-speed mode Low-speed mode Subosc-speed mode

Note: Make sure that $T_i = T_a + \theta_{ja} \times \text{total power consumption (W)}$, where total power consumption = (VCC - V_{OH}) × $\Sigma I_{OH} + V_{OL} \times \Sigma I_{OL} + V_{OL} \times \Sigma I_{OH} + V_{OL} \times$ I_{CC}max × VCC.

$I/O V_{IH}, V_{IL}$ 2.2.2

Table 2.4 I/O V_{IH}, V_{IL} (1 of 2)

Parameter		Symbol	Min	Тур	Мах	Unit	
Input voltage (except for	Peripheral function pin	EXTAL (external clock input), SPI (except RSPCK)		VCC × 0.8	—	—	V
input pins)			VIL	—	—	VCC × 0.2	
		IIC (SMBus)	VIH	2.1	_	VCC + 3.6 (max 5.8)	
			VIL	—	—	0.8	

Table 2.2 推荐工作条件	
------------------	--

Parameter	Symbol	Value	Min	Тур	Max	Unit
电源电压	VCC	不使用USB时	2.7	—	3.6	V
		使用USB时	3.0	—	3.6	V
	VSS	—	0	—	V	
USB电源电压		—	VCC	—	V	
	VSS_USB	—	0	—	V	
VBATT电源电压	VBATT		1.8	—	3.6	V
模拟电源电压	AVCC0*1	—	VCC	—	V	
	AVSS0			0	—	V

注1.将AVCC0连接到VCC。不使用AD转换器和DA转换器时,不要离开AVCC0、VREFHVREFH0、 AVSSO和VREFLVREFLO引脚打开。将AVCCO和VREFHVREFHO引脚连接到VCC,以及AVSSO和VREFL VREFLO引脚分别连接到VSS。

2.2 DC Characteristics

2.2.1 Tj/Ta Definition

Table 2.3 DC characteristics

条件:工作温度(Ta)-40至+105℃的产品

1	Parameter	Symbol	Тур	Мах	Unit	测试条件
	允许结温	Tj	_	125	°C	High-speed mode Low-speed mode Subosc-speed mode

确保Tj=Ta+θja×总功耗(W),其中总功耗=(VCCVOH)×ΣIOH+VOL×ΣIOL+ Note: I_{CC}max × VCC.

2.2.2 IOVIH

IOVIH VIL(1of2) Table 2.4

Parameter		符号最小	, 值	Тур	Мах	Unit	
输入电压(施 外设功能引 EX 密特触发器输 脚 入引脚除外)		EXTAL(外部时钟输入),SPI(RSPCK除外)	V _{IH}	VCC × 0.8	—	—	V
> / / < / (/) = / / (/) = / / / (/)	VIL	—	—	VCC × 0.2			
	IIC (SMBus)				_	VCC + 3.6 (max 5.8)	
			VIL	—	—	0.8	

Table 2.4 I/O VIH. VII (2 of 2)

2	Electrical Characteristics
Ζ.	

RA4M3 Datasheet

Parameter Symbol Nin Type Max Unit Parameter Schwilz ubger Peripheral specification pin In C recenpt for SMBus) Virit	Table 2.4	/O V _{IH} , V _{IL} (2 o	of 2)									Table 2.4	IOVIH VIL(2of2	2)		
Serent Hings publicitings Prophetal (number) IC (nexcept for SMRun) V <</th <th>Parameter</th> <th></th> <th></th> <th></th> <th></th> <th>Symbol</th> <th>Min</th> <th>Тур</th> <th>Мах</th> <th>Unit</th> <th></th> <th>Parameter</th> <th></th> <th></th> <th></th>	Parameter					Symbol	Min	Тур	Мах	Unit		Parameter				
$ \left \begin{array}{c c c c c c } \hline N & Violariant ports^{1/2} & Violariant ports^{$	Schmitt trigger input voltage	Peripheral function pin	IIC (except for	SMBus)		V _{IH}	VCC × 0.7	—	VCC + 3.6 (max 5.8)	V		施密特触发器 输入电压	外设功能引 脚	IIC (except for S	SMBus)	
$ \left \begin{array}{c c c c c c } \hline V & V & V & V & V & V & V & V & V & V$						VIL	-	-	VCC × 0.3							
5 V.stolerant ports ^{1,1} * VIII VIC2 - VIC2 VIC					ΔV _T	VCC × 0.05	-	-								
$ \left \begin{array}{c c c c c c c c c c c c c c c c c c c $		5 V-tolerant po	orts ^{*1 *5}	VIH	VCC × 0.8	-	VCC + 3.6 (max 5.8)					5 V-tolerant por	ts ^{*1 *5}			
$ \left. \begin{array}{c c c c c c c c c c c c c c c c c c c $						VIL	-	-	VCC × 0.2	1						
RTCCC, RTCC, RTCC2, AV_1 When voc selected V _H V _H V _{BAT} * 0.2 V _L V _{BAT} * 0.2 Point V _B * 0.2 Point V _B * 0.2 Point V _B * 0.2 Point V _{BAT} * 0.2 Point V _{BAT} * 0.2 Point V _B * 0.2 Point						ΔV _T	VCC × 0.05	-	-							
$ \left \begin{array}{c c c c c c c c c } \hline Punction & selected & \hline V_{i, } & - & - & V_{SATT} \times 0.2 \\ \hline V_{i, } & - & - & V_{SATT} \times 0.2 \\ \hline \Delta V_{T} & V_{0, CT} \times & - & - & - & - & - & - & - & - & - &$			RTCIC0, RTCIC1,	When using the Battery Backup	When VBATT power supply is	VIH	V _{BATT} × 0.8	-	V _{BATT} + 0.3					RTCIC0, RTCIC1,	使用备用电池 时	
$ \frac{1}{10^{10} \text{ km}^{10} $			RTCIC2	Function	selected	VIL	-	-	V _{BATT} × 0.2	1				RTCIC2	Function	
Note: Supply is power supply is selected ViH Power supply is selected ViH Power supply is selected ViH Power supply is power supply is selected ViH Power supply is power supply						ΔV _T	V _{BATT} × 0.05	-	-							
Normal Sector Normal					When VCC power supply is selected	VIH	VCC × 0.8	_	Higher voltage either VCC + 0.3 V							
$ \begin{array}{ c c c c c c } \hline V_{IL} & -u & -v & VCC \times 0.2 \\ \hline & & & & & & & & & & & & & & & & & &$									V _{BATT} + 0.3 V		-li-					
$ \left \begin{array}{c c c c c c c c c c c c c c c c c c c $						VIL	-	-	VCC × 0.2	1	L.H					
When not using the Battery Backup Function Vi,H VCC × 0.3 0.8 - VCC × 0.2 Vi,L - - VCC × 0.2 AV _T VCC × 0.2 -				When not using the Function		ΔV _T	VCC × 0.05	-	-							
$ \left \begin{array}{c c c c c c c c c c c c c c c c c c c $					g the Battery Backup	VIH	VCC × 0.8	-	VCC + 0.3		T-3				不使用备用电池时 Function	
$ \frac{\Delta V_{T}}{0.05} \frac{VCC \times}{0.05} - - \\ \frac{\Delta V_{H}}{0.05} \frac{VCC \times}{0.05} - - \\ \frac{V_{H}}{0.8} \frac{VCC \times}{0.8} - - \\ \frac{V_{L}}{0.7} \frac{VCC \times 0.2}{0.05} - - \\ \frac{\Delta V_{T}}{0.05} \frac{VCC \times}{0.05} - - \\ \frac{\Delta V_{T}}{0.05} \frac{VCC \times}{0.05} - - \\ \frac{V_{L}}{0.05} - - \\ \frac{V_{L}}{0.05} - - - \\ \frac{V_{L}}{0.05} - \\ V_{$						V _{IL}	-	-	VCC × 0.2	1	E.F.					
$ \frac{\left \begin{array}{cccccccccccccccccccccccccccccccccccc$						ΔV _T	VCC × 0.05	-	-							
$ \frac{ V_{IL} }{ V_{V} } = \frac{ V_{V} }{ V_{V} $			Other input pir		VIH	VCC × 0.8	-	-					其他输入引脚*2			
$ \frac{ }{ } \frac{ }{ $						VIL	-	_	VCC × 0.2	1						
Ports 5 V-tolerant ports*3*5 V_{IH} VCC × 0.8 $-$ VCC + 3.6 (max 5.8) V V_{IL} $ -$ VCC × 0.2 $-$ VCC × 0.2 $ -$						ΔV _T	VCC × 0.05	-	-							
VIL - VCC × 0.2 Other input pins*4 VIH VCC × 0.2 - - VIL - - - VIL - VCC × 0.2		Ports	5 V-tolerant po	orts ^{*3 *5}		VIH	VCC × 0.8	-	VCC + 3.6 (max 5.8)	V			Ports	5 V-tolerant por	ts ^{*3 *5}	
Other input pins*4 VIH VCC × - - VIL - - VCC × 0.2 Image: Constraint of the second						VIL	-	-	VCC × 0.2	1						
V_{IL} — $-$ VCC × 0.2			Other input pir	าร ^{*4}		VIH	VCC × 0.8	-	-					其他输入引脚*4		
						VIL	-	_	VCC × 0.2							

Note 1. RES and peripheral function pins associated with Ports P205, P206, P400, P401, P407 to P415, and P708 to P713 (total 22 pins).

Note 2. All input pins except for the peripheral function pins already described in the table.

Note 3. Ports P205, P206, P400, P401, P407 to P415, and P708 to P713 (total 21 pins). Note 4. All input pins except for the ports already described in the table.

Note 5. When VCC is less than 2.7 V, the input voltage of 5 V-tolerant ports should be less than 3.6 V, otherwise breakdown may occur because 5 V-tolerant ports are electrically controlled so as not to violate the break down voltage.

		兵他彻八┐№*4	
注1.与端口P205、P20	06、P400、P4	01、P407至P415	和P708至P713相关
注2.除表中已描述的外	卜围功能引脚外	的所有输入引脚。	
注3.端口P205、P206、	、P400、P401	I、P407∼P415、I	P708~P713(共21
注4.除表中已描述的端	端口外的所有输	入引脚。	
注5.当VCC小于2.7V时	↓,5V容限端口	的输入电压应小于	3.6V,否则可能发

	符号最小值		Тур	Мах	Unit
	V _{IH}	VCC × 0.7	—	VCC + 3.6 (max 5.8)	V
	VIL	—	—	VCC × 0.3	
	ΔV _T	VCC × 0.05	_	_	
	VIH	VCC × 0.8	—	VCC + 3.6 (max 5.8)	
	VIL	_	—	VCC × 0.2	
	ΔV_T	VCC × 0.05	—	_	
选择VBATT电 源时	V _{IH}	V _{BATT} × 0.8	—	V _{BATT} + 0.3	
	VIL	—	—	V _{BATT} × 0.2	
	ΔV _T	V _{BATT} × 0.05	_	—	
选择VCC电源 时	V _{IH}	VCC × 0.8	_	更高的电压 VCC+0.3V或 VBATT+0.3	-
				V	
	VIL	—	—	VCC × 0.2	
	ΔV_T	VCC × 0.05	_	_	
	V _{IH}	VCC × 0.8	—	VCC + 0.3	
	V _{IL}	—	—	VCC × 0.2	
	ΔV _T	VCC × 0.05	—	—	
	V _{IH}	VCC × 0.8	—	—	
	VIL	—	—	VCC × 0.2	
	ΔV _T	VCC × 0.05	_	—	
	V _{IH}	VCC × 0.8	—	VCC + 3.6 (max 5.8)	V
	VIL	_	_	VCC × 0.2	
	V _{IH}	VCC × 0.8	_	—	
	VIL	_	—	VCC × 0.2	

的RES和外围功能引脚(共22个引脚)。

1针)。

š生击穿,因为5V容限端口是电气控制的,以免违反击穿电压。

Parameter

per pin)

pin)

of all pins)

2.2.3 I/O I_{OH}, I_{OL}

Permissible output current (average value

Permissible output current (max value per

Table 2.5 I/O I_{OH}, I_{OL}

Min Typ Max Unit

-2.0 mA

-2.0 mA

-4.0 mA

mA

mA

-2.0 mA 2.0

–4.0 mA 4.0 mΑ

–16 mA

–4.0 mA

-4.0 | mA

-8.0 mA

mΑ

mA

mΑ

mΑ

mΑ

mΑ

mΑ

mΑ

–4.0 mA

-8.0 | mA

16

4.0

4.0

8.0

-40 mΑ

40

4.0

8.0 mΑ

-32 mΑ

32

-80 mΑ

80

2.0 mΑ

2.0 mA

4.0 mA

-20 mΑ

20

Symbol

IOH

IOL

IOH

IOL IOH

IOL

I_{OH}

IOL

I_{OH}

lol

lol

I_{OH}

IOL

IOH

lol

IOH

IOL

I_{OH}

IOL

IOH

loL

IOH

lol

loL

IOH

IOL

ΣI_{OH (max)}

ΣI_{OL (max)}

Low drive*1

Middle drive*2

High drive^{*3}

Low drive*1

High drive*3

Low drive*1

Middle drive*2

High drive*3

Low drive*1

High drive^{*3}

Middle drive^{*2} I_{OH}

Middle drive*2 | IOH

RA4M3 Datasheet

我爱我哦 2.2.3

我爱我哦 Table 2.5

Parameter			Symbol	最小	值典型 	值最大	值自
允许输出电流(每个引脚的平均值)	端口P000至P009、P014、P015、P201	_	I _{ОН}	—	-	-2.0	n
			I _{OL}	—	-	2.0	n
	端口P205、P206、P407至P415、P70 9至P712(サ17个引脚)	低驱动*1	I _{ОН}	—	-	-2.0	n
			I _{OL}	—	-	2.0	n
		中间驱动器*2]	юн	—	-	-4.0	n
			I _{OL}	—	-	4.0	n
		高速驱动*3	I _{ОН}	—	-	-20	n
			I _{OL}	—	-	20	n
	其他输出引脚∗4	低驱动*1	I _{OH}	—	-	-2.0	n
			I _{OL}	—	-	2.0	n
		中间驱动器*21	OH	—	-	-4.0	n
			I _{OL}	—	-	4.0	n
		高速驱动*3	I _{OH}	—	-	-16	n
			I _{OL}	—	-	16	n
允许输出电流(每个引脚的最大值)	端口P000至P009、P014、P015、P201	_	I _{OH}	—	-	-4.0	n
			I _{OL}	—	-	4.0	n
	端口P205、P206、P407至P415、P70	低驱动*1	I _{OH}	—	-	-4.0	n
			I _{OL}	—	-	4.0	n
		中间驱动器*2]	юн	—	-	-8.0	n
			I _{OL}	—	-	8.0	n
		高速驱动*3	I _{OH}	—	-	-40	n
			I _{OL}	—	-	40	n
	其他输出引脚∗4	低驱动*1	I _{OH}	—	-	-4.0	n
			I _{OL}	—	-	4.0	n
		中间驱动器*2]	OH	—	-	-8.0	n
			I _{OL}	—	-	8.0	n
		高速驱动*3	I _{OH}	—	-	-32	n
			I _{OL}	—	-	32	n
允许输出电流(所有引脚总和的最大值)	所有输出引脚的最大值		ΣI _{OH (max)}	—	-	-80	n
			ΣΙοι (που)	_		80	$\frac{1}{n}$

Note 1. This is the value when low driving ability is selected in the Port Drive Capability bit in the PmnPFS register. The selected driving ability is retained in Deep Software Standby mode.

Ports P000 to P009, P014, P015, P201

Ports P205, P206, P407 to P415, P708

Ports P000 to P009, P014, P015, P201

Ports P205, P206, P407 to P415, P708

to P713 (total 17 pins)

Other output pins*4

to P713 (total 17 pins)

Other output pins*4

This is the value when middle driving ability is selected in the Port Drive Capability bit in the PmnPFS register. The selected driving Note 2. ability is retained in Deep Software Standby mode.

Note 3. This is the value when high driving ability is selected in the Port Drive Capability bit in the PmnPFS register. The selected driving ability is retained in Deep Software Standby mode.

Note 4. Except for P200, which is an input port.

Permissible output current (maxvalue of total | Maximum of all output pins

Caution: To protect the reliability of the MCU, the output current values should not exceed the values in this table. The average output current indicates the average value of current measured during 100 µs.

RENESAS

R01DS0368EJ0120 Rev.1.20 Dec 2, 2020

平均输出电流表示在100µs期间测量的电流平均值。

注4.P200除外,它是一个输入端口。

RENESAS

注1.这是在PmnPFS寄存器的端口驱动能力位中选择低驱动能力时的值。在深度软件待机模式下会保留所选的驾驶能力。

注2.这是在PmnPFS寄存器的端口驱动能力位中选择中等驱动能力时的值。在深度软件待机模式下会保留所选的驾驶能力。

注3.这是在PmnPFS寄存器的端口驱动能力位中选择高驱动能力时的值。在深度软件待机模式下会保留所选的驾驶能力。

Caution: 为保护单片机的可靠性,输出电流值不应超过此表中的值。

I/O V_{OH}, V_{OL}, and Other Characteristics 2.2.4

I/O V_{OH} , V_{OL} , and other characteristics Table 2.6

Parameter		Symbol	Min	Тур	Max	Unit	Test conditions
Output voltage	IIC	V _{OL}	-	-	0.4	V	I _{OL} = 3.0 mA
		V _{OL}	-	-	0.6]	I _{OL} = 6.0 mA
	IIC ^{*1}	V _{OL}	-	-	0.4	1	I _{OL} = 15.0 mA (ICFER.FMPE = 1)
		V _{OL}	-	0.4	-]	I _{OL} = 20.0 mA (ICFER.FMPE = 1)
	Ports P205, P206, P407 to P415, P708 to P713 (total of 17 pins) ^{*2}	V _{OH}	VCC - 1.0	-	-		I _{OH} = -20 mA VCC = 3.3 V
		V _{OL}	-	-	1.0		I _{OL} = 20 mA VCC = 3.3 V
	Other output pins	V _{OH}	VCC - 0.5	-	-]	I _{OH} = -1.0 mA
		V _{OL}	-	-	0.5	1	I _{OL} = 1.0 mA
Input leakage current	RES	l _{in}	_	-	5.0	μA	V _{in} = 0 V V _{in} = 5.5 V
	Port P200		-	-	1.0		V _{in} = 0 V V _{in} = VCC
Three-state leakage current (off state)	5 V-tolerant ports	II _{TSI} I	-	-	5.0	μA	V _{in} = 0 V V _{in} = 5.5 V
	Other ports (except for port P200)		-	-	1.0		V _{in} = 0 V V _{in} = VCC
Input pull-up MOS current	Ports P0 to P8	I _p	-300	-	-10	μA	VCC = 2.7 to 3.6 V V _{in} = 0 V
Input capacitance	USB_DP, USB_DM, and ports P014, P015, P400, P401, P511, P512	C _{in}	-	-	16	pF	Vbias = 0 V Vamp = 20 mV f = 1 MHz
	Other input pins]	_	_	8		1a = 25°C

Note 1. SCL0_A, SDA0_A (total 2 pins).

Note 2. This is the value when high driving ability is selected in the Port Drive Capability bit in the PmnPFS register. The selected driving ability is retained in Deep Software Standby mode.

RA4M3 Datasheet

IOVOH VOL和其他特性 2.2.4

IOVOH、VOL和其他特性 Table 2.6

Parameter		符号最小	, 值	典型	最大单	单元测试条件			
输出电压	IIC	V _{OL}	—	-	0.4	V	我OL=3.0毫安		
		V _{OL}	_	-	0.6]	我OL=6.0毫安		
	IIC ^{*1}	V _{OL}	_	-	0.4]	IOL=15.0mA(ICFER.FMPE=1)		
		V _{OL}	—	0.4	-		IOL=20.0mA(ICFER.FMPE=1)		
	端口P205、P206、P407至P415 、P708至P713(共17针)*2	V _{OH}	VCC - 1.0	—	—		IOH= 20mAV CC=3.3V		
		V _{OL}	_	—	1.0		我OL=20毫 安VCC=3.3V		
	其他输出引脚	V _{OH}	VCC - 0.5	-	-		IOH= 1.0毫安		
		V _{OL}	—	—	0.5		我OL=1.0毫安		
输入漏电流	RES	I _{in}	_	—	5.0	μA	V _{in} = 0 V V _{in} = 5.5 V		
	Port P200		_	-	1.0		V _{in} = 0 V V _{in} = VCC		
三态漏电流(关闭状态)	5 V-tolerant ports	I _{TSI}	_	—	5.0	μA	V _{in} = 0 V V _{in} = 5.5 V		
	其他端口(端口P200除外)		—	_	1.0		V _{in} = 0 V V _{in} = VCC		
输入上拉MOS电流	端口P0至P8	I _p	-300	—	-10	μA	VCC = 2.7 to 3.6 V V _{in} = 0 V		
输入电容	USB_DP、USB_DM和端口 P014, P015, P400, P401, P511, P512	C _{in}	_	_	16	pF	Vbias = 0 V Vamp=20mVf =1MHzTa=25°		
	其他输入引脚		—	—	8				

Note 1. SCL0_A, SDA0_A (total 2 pins). 注2.这是在PmnPFS寄存器的端口驱动能力位中选择高驱动能力时的值。 在深度软件待机模式下会保留所选的驾驶能力。

2.2.5 Operating and Standby Current

Table 2.7 Operating and standby current (1 of 2)

Parameter	meter			Symbol	Min	Тур	Max	Unit	Test conditions		1	
Supply	High-speed	Maximum*2 *13			I _{CC} *3	-	—	95	mA	ICLK = 100 MHz		1
current	mode	CoreMark ^{®*5 *6 *}	12			-	12	-	1	PCLKA = 100 MHz		ľ
		Normal mode	All periph while (1) flash ^{*4 *12}	eral clocks enabled, code executing from		_	22	_		PCLKB = 50 MHz PCLKC = 50 MHz		
			All periph while (1) flash ^{*5 *6}	eral clocks disabled, code executing from *12		_	12	_		PCLKD = 100 MHz FCLK = 50 MHz		
		Sleep mode ^{*5}				-	7 ^{*6} *12	47 ^{*7} *13				
		Increase during	Data flasł	ו P/E		—	6	_	1			
		BGO operation	Code flas	h P/E		—	8	_				
	Low-speed mod	le ^{*5 *10}				—	1.9	_		ICLK = 1 MHz		
	Subosc-speed r	node ^{*5 *11}				_	1.7	-		ICLK = 32.768 kHz		
	Software Stand	by mode	SNZCR.F	XDREQEN = 1		_	—	34		_		
		1	SNZCR.F	XDREQEN = 0		_	1.6	-		—		
	Deep Software Standby mode	Power supplied to resume detecting	o Standby Junit	SRAM and USB		_	16.9	131	μA	_	Ţ,	
		Power not supplied to	Power-on power fur	reset circuit low action disabled		_	11.8	31		_		
		resume detecting unit	Power-on power fur	reset circuit low action enabled		-	4.8	21		_	X TO	
		Increase when the RTC and	When the oscillator	low-speed on-chip (LOCO) is in use		_	4.0	—		—	PH 2	
		operating	When a c clock load	rystal oscillator for low Is is in use		_	1.2	—				
			When a c standard	rystal oscillator for clock loads is in use		_	1.5	—		—		
	RTC operating battery backup	while VCC is off (w function, only the F	rith the RTC and	When a crystal oscillator for low		-	0.9	-		V _{BATT} = 1.8 V, VCC = 0 V		
		ator operate)		CIOCK IDAUS IS IN USE		-	1.3	-		V _{BATT} = 3.3 V, VCC = 0 V		
				When a crystal oscillator for		-	1.0	-		V _{BATT} = 1.8 V, VCC = 0 V		
				is in use		-	1.7	-		V _{BATT} = 3.3 V, VCC = 0 V		
	Inrush current o	n returning from d	еер	Inrush current ^{*8}	I _{RUSH}	-	160	-	mA			
	sonware stands	y moae		Energy of inrush current ^{*8}	E _{RUSH}	-	1.0	-	μC			

RA4M3 Datasheet

2.2.5 工作和待机电流

Table 2.7 工作和待机电流(1of2)

Parameter	eter				Symbol	Min	Тур	Max	单元	则试条件
供电电	High-speed	Maximum*2 *13			I _{CC} *3	-	—	95	mA	ICLK = 100 MHz
//IL*	mode	CoreMark ^{®*5 *6 **}	12		1	—	12	—	1	PCLKA = 100 MHz
		正常模式	启用所有5 从闪存执行	外设时钟,同时(1) 行代码∗4∗12		-	22	-		PCLKB = 50 MHz PCLKC = 50 MHz
			禁用所有5 代码从闪7	外设时钟,同时(1) 存执行*5*6*12	-	-	12	-		PCLKD = 100 MHz FCLK = 50 MHz
		睡眠模式*5				-	7 ^{*6} *12	47 ^{*7} *13		
		BGO运行期间	数据闪存F	PE	-	—	6			
		増加	代码闪存P	PE		—	8	—	1	
	Low-speed mod	le ^{*5 *10}				-	1.9	—	1	ICLK = 1 MHz
	Subosc-speed n	node ^{*5 *11}				—	1.7	_		ICLK = 32.768 kHz
	软件待机模式		SNZCR.R	XDREQEN = 1		_	—	34		_
		1	SNZCR.R	XDREQEN = 0		_	1.6	-		_
	深度软件待机 模式	为备用SRAM和U	SB恢复检测	3恢复检测单元供电		_	16.9	131	μA	_
		未向SRAM或U SB恢复检测单 一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一	上电复位 禁用	电路低功耗功能		-	11.8	31		_
			上电复位 启用	电路低功耗功能		-	4.8	21		
		RTC和AGT运 行时增加	使用低速) 时	≒上振荡器(LOCO)		-	4.0	-		_
			当使用用于 荡器时	于低时钟负载的晶体振		-	1.2	-		_
			当使用标》 荡器时	佳时钟负载的晶体振		—	1.5	—		_
	VCC关闭时RTC词 只有RTC和副时针	运行(具有电池备创 钟振荡器运行)	分功能,	当使用用于低时钟 负载的晶体振荡器 时		—	0.9	_		V _{BATT} = 1.8 V, VCC = 0 V
						-	1.3	-		V _{BATT} = 3.3 V, VCC = 0 V
				当使用标准时钟负载 的晶体振荡器时		-	1.0	-		V _{BATT} = 1.8 V, VCC = 0 V
						_	1.7	_		V _{BATT} = 3.3 V, VCC = 0 V
	│ 从深度软件待机 □ 流	模式返回时的浪涌	电	Inrush current ^{*8}	I _{RUSH}	_	160	—	mA	
	****			浪涌电流能量∗8	E _{RUSH}	-	1.0	_	μC	

2. Electrical Characteristics

Table 2.7 Operating and standby current (2 of 2)

Parameter	Symbol	Min	Тур	Max	Unit	Test conditions		
Analog	During 12-bit A/D conversion	AI _{CC}	-	0.8	1.1	mA	—	
power supply current	Temperature sensor]	—	0.1	0.2	mA	—	
	During D/A conversion (per unit)	Without AMP output]	—	0.1	0.2	mA	—
		With AMP output]	—	0.6	1.1	mA	—
	Waiting for A/D, D/A conversion (all units)				0.9	1.6	mA	—
	ADC12, DAC12 in standby modes (all units)*	DAC12 in standby modes (all units) ^{*9}				8	μA	—
Reference	During 12-bit A/D conversion (unit 0)		AI _{REFH0}	—	70	120	μA	—
power supply current	Waiting for 12-bit A/D conversion (unit 0)]	—	0.07	0.5	μA	—	
(VREFH0)	ADC12 in standby modes (unit 0)]	—	0.07	0.5	μA	—	
Reference	During 12-bit A/D conversion (unit 1)		AI _{REFH}	—	70	120	μA	—
power supply current	During D/A conversion (per unit)	Without AMP output]	—	0.1	0.4	mA	—
(VREFH)		With AMP ouput]	—	0.1	0.4	mA	—
	Waiting for 12-bit A/D (unit 1), D/A (all units) conversion]	—	0.07	0.8	μA	—
	ADC12 unit 1 in standby modes]	—	0.07	0.8	μA	—	
USB	Low speed	USB	ICCUSBLS	-	3.5	6.5	mA	VCC_USB
current	Full speed	USB	ICCUSBFS	—	4.0	10.0	mA	VCC_USB

Note 1. Supply current values are with all output pins unloaded and all input pull-up MOSs in the off state.

Note 2. Measured with clocks supplied to the peripheral functions. This does not include the BGO operation.

Note 3. I_{CC} depends on f (ICLK) as follows.

I_{CC} Max. = 0.53 × f + 42 (max. operation in high-speed mode)

I_{CC} Typ. = 0.09 × f + 3.6 (normal operation in high-speed mode, all peripheral clocks disabled)

- I_{CC} Typ. = 0.2 × f + 1.7 (low-speed mode)
- I_{CC} Max. = 0.05 × f + 42 (sleep mode)
- Note 4. This does not include the BGO operation.

Note 5. Supply of the clock signal to peripherals is stopped in this state. This does not include the BGO operation.

- Note 6. FCLK, PCLKA, PCLKB, PCLKC, and PCLKD are set to divided by 64 (1.563 MHz).
- Note 7. FCLK, PCLKA, PCLKB, PCLKC, and PCLKD are set to divided by 64 (3.125 MHz).
- Note 8. Reference value

Note 9. When the MCU is in Software Standby mode or the MSTPCRD.MSTPD16 (12-Bit A/D Converter 0 Module Stop bit) and MSTPCRD.MSTPD15 (12-bit A/D converter 1 module stop bit) are in the module-stop state.

Note 10. FCLK, PCLKA, PCLKB, PCLKC, and PCLKD are set to divided by 64 (15.6 kHz).

Note 11. PCLKA, PCLKB, PCLKC, and PCLKD are set to divided by 64 (512 Hz). FCLK is the same frequency as that of ICLK. Note 12. PLL output frequency = 100MHz.

Note 13. PLL output frequency = 200MHz.

Table 2.8 Coremark and normal mode current

Parameter		Symbol	Тур	Unit	Test conditions	
Supply Current ^{*1}	Coremark ^{*2 *3}		I _{CC} 11	119	µA/MHz	ICLK = 100MHz
N	Normal mode All peripheral clocks disabled, cache on, while (1) code executing from flash ^{*2 *3}		115		= PCLKB = PCLKC = PCLKD = FCLK = 1.56 MHz	
		All peripheral clocks disabled, cache off, while (1) code executing from flash ^{*2 *3}		117		

Note 1. Supply current values are with all output pins unloaded and all input pull-up MOSs in the off state.

Note 2. Supply of the clock signal to peripherals is stopped in this state. This does not include the BGO operation.

RA4M3 Datasheet

Table 2.7	工作和待机电流(2of2)							
Parameter			Symbol	Min	Тур	Max	单元	测试条件
模拟电源电	在12位AD转换期间		Al _{CC}	—	0.8	1.1	mA	—
泇	温度感应器		1	_	0.1	0.2	mA	—
	DA转换期间(每单位)	无AMP输出]		0.1	0.2	mA	—
		带AMP输出		_	0.6	1.1	mA	—
	等待AD、DA转换(所有单位)	·		—	0.9	1.6	mA	—
	ADC12、DAC12处于待机模式(所有单元)*9			—	2	8	μA	_
参考电源电	在12位AD转换期间(单元0)		AI _{REFH0}	—	70	120	μA	—
流(VREFHU)	等待12位AD转换(单元0)	1	—	0.07	0.5	μA	—	
	ADC12处于待机模式(单元0)		1		0.07	0.5	μA	[
参考电源电	在12位AD转换期间(单元1)		AI _{REFH}	—	70	120	μA	_
))I(VKEFF)	DA转换期间(每单位)	无AMP输出		_	0.1	0.4	mA	
		带AMP输出		_	0.1	0.4	mA	—
	等待12位AD(单元1)、DA(所有单元)转扩	 奂]	_	0.07	0.8	μA	_
	ADC12单元1处于待机模式			<u> </u>	0.07	0.8	μA	_
USB工作	低速	USB	ICCUSBLS	<u> </u>	3.5	6.5	mA	VCC_USB
-5/11	全速	USB	ICCUSBFS	—	4.0	10.0	mA	VCC_USB

注1.电源电流值是在所有输出引脚空载且所有输入上拉MOS处于关闭状态时的值。 注2.使用提供给外设功能的时钟测量。这不包括BGO操作。 注3.ICC取决于f(ICLK),如下所示。

我CC最大。=0.53×f+42(高速模式下的最大操作)

我CC典型。=0.09×f+3.6(高速模式下正常运行,所有外设时钟禁用)

 I_{CC} Typ. = 0.2 × f + 1.7 (low-speed mode)

 I_{CC} Max. = 0.05 × f + 42 (sleep mode)

注4.这不包括BGO操作。 注5.在此状态下停止向外围设备提供时钟信号。这不包括BGO操作。 注6.FCLK、PCLKA、PCLKB、PCLKC和PCLKD设置为64分频(1.563MHz)。注7.FCLK、PCLKA、 PCLKB、PCLKC和PCLKD设置为64分频(3.125MHz)。

注8.参考值

注9.当MCU处于软件待机模式或MSTPCRD.MSTPD16(12位AD转换器0模块停止位)和 MSTPCRD.MSTPD15(12位AD转换器1模块停止位)处于模块停止状态。 注10.FCLK、PCLKA、PCLKB、PCLKC和PCLKD设置为64分频(15.6kHz)。 注11.PCLKA、PCLKB、PCLKC和PCLKD设置为除以64(512Hz)。FCLK与ICLK的频率相同。 注12.PLL输出频率=100MHz。注13.PLL输 出频率=200MHz。

Table 2.8 Coremark和正常模式电流

Parameter			Symbol	Тур	Unit	测试条件
电源电流∗1	Coremark*2 *3		Icc	119	µA/MHz	ICLK = 100MHz
	正常模式 所有外谈 用,缓行 同时(1)1 闪存执行 所有外谈 用,缓行 同时(1)1 闪存执行	所有外设时钟禁 用,缓存打开, 同时(1)代码从 闪存执行*2*3		115	= PCLKB = PCLKC = PCLKD = FCLK = 1.56 MHz	
		所有外设时钟禁 用,缓存关闭, 同时(1)代码从 闪存执行*2*3		117		

注1.电源电流值是在所有输出引脚空载且所有输入上拉MOS处于关闭状态时的值。 注2.在此状态下停止向外围设备提供时钟信号。这不包括BGO操作。

R01DS0368EJ0120 Rev.1.20 Dec 2, 2020

RA4M3 Datasheet

注3.PLL输出频率=100MHz。

----- Average value of the tested upper-limit samples during product evaluation.

----- Average value of the tested upper-limit samples during product evaluation.

第26页,共92页

RA4M3 Datasheet

RA4M3 Datasheet

100

RENESAS

2.2.6 VCC Rise and Fall Gradient and Ripple Frequency

Table 2.9 Rise and fall gradient characteristics

Parameter			Min	Тур	Max	Unit	Test conditions
VCC rising gradient	Voltage monitor 0 reset disabled at startup	SrVCC	0.0084	—	20	ms/V	—
		0.0084	_	—		_	
	SCI/USB boot mode ^{*1}		0.0084	—	20		_
VCC falling gradient ^{*2}	SfVCC	0.0084	—	—	ms/V	_	

Note 1. At boot mode, the reset from voltage monitor 0 is disabled regardless of the value of the OFS1.LVDAS bit. Note 2. This applies when VBATT is used.

Table 2.10 Rising and falling gradient and ripple frequency characteristics

The ripple voltage must meet the allowable ripple frequency f_{r(VCC)} within the range between the VCC upper limit (3.6 V) and lower limit (2.7 V). When the VCC change exceeds VCC ±10%, the allowable voltage change rising and falling gradient dt/dVCC must be met.

Parameter	Symbol	Min	Тур	Max	Unit	Test conditions
Allowable ripple frequency	f _{r (VCC)}	_	—	10	kHz	Figure 2.6 $V_{r (VCC)} \le VCC \times 0.2$
		_	_	1	MHz	Figure 2.6 V _{r (VCC)} ≤ VCC × 0.08
		_	-	10	MHz	Figure 2.6 V _{r (VCC)} ≤ VCC × 0.06
Allowable voltage change rising and falling gradient	dt/dVCC	1.0	—	_	ms/V	When VCC change exceeds VCC ±10%

Figure 2.6 **Ripple waveform**

2.2.7 **Thermal Characteristics**

Maximum value of junction temperature (Tj) must not exceed the value of "section 2.2.1. Tj/Ta Definition". Tj is calculated by either of the following equations.

- $Tj = Ta + \theta ja \times Total power consumption$
- $Tj = Tt + \Psi jt \times Total power consumption$

 - Tj : Junction Temperature (°C)
 - Ta : Ambient Temperature (°C)
 - Tt : Top Center Case Temperature (°C)
 - θja : Thermal Resistance of "Junction"-to-"Ambient" (°C/W)

RENESAS

RA4M3 Datasheet

VCC上升和下降梯度和纹波频率 2.2.6

Table 2.9 上升和下降梯度特性

Parameter			Min	Тур	Max	Unit	测试条件
VCC上升梯度	启动时禁用电压监视器0复位	SrVCC	0.0084	—	20	ms/V	_
	启动时启用电压监视器0复位		0.0084		—		_
	SCIUSB启动模式*1		0.0084	—	20		_
VCC下降梯度*2		SfVCC	0.0084	_	—	ms/V	_

注1.在引导模式下,无论OFS1.LVDAS位的值如何,都禁止从电压监视器0进行的复位。 注2.这适用于使用VBATT时。

Table 2.10 上升下降梯度和纹波频率特性

纹波电压必须在VCC上限(3.6V)和下限(2.7

五)。当VCC变化超过VC	五)。当VCC变化超过VCC±10%时,必须满足允许的电压变化上升和下降梯度dtdVCC。									
Parameter	Symbol	Min	Тур	Мах	Unit	测试条件				
允许纹波频率 f	f _{r (VCC)}	_	—	10	kHz	Figure 2.6 V _{r (VCC)} ≤ VCC × 0.2				
		_	_	1	MHz	Figure 2.6 V _{r (VCC)} ≤ VCC × 0.08				
		-	_	10	MHz	Figure 2.6 V _{r (VCC)} ≤ VCC × 0.06				
允许电压变化上 升下降梯度	dt/dVCC	1.0	_	_	ms/V	当VCC变化超过VCC ±10%				

θja: "结"到"环境"的热阻(°CW)

R01DS0368EJ0120 Rev.1.20 Dec 2, 2020

RA4M3 Datasheet

- Ψjt : Thermal Resistance of "Junction"-to-"Top Center Case" (°C/W)
- Total power consumption = Voltage × (Leakage current + Dynamic current)
- Leakage current of IO = $\Sigma (I_{OL} \times V_{OL}) / Voltage + \Sigma (|I_{OH}| \times |VCC V_{OH}|) / Voltage$
- Dynamic current of IO = Σ IO (C_{in} + C_{load}) × IO switching frequency × Voltage
 - C_{in}: Input capacitance
 - C_{load}: Output capacitance

Regarding θ ja and Ψ jt, refer to Table 2.11.

Table 2.11 Thermal Resistance

Parameter	Package	Symbol	Value ^{*1}	Unit	Test conditions	
Thermal	64-pin LQFP (PLQP0064KB-C)	θja	38.0	°C/W	JESD 51-2 and 51-7	
Resistance	100-pin LQFP (PLQP0100KB-B)		35.0		compliant	
	144-pin LQFP (PLQP0144KA-B)		33.0			
	64-pin LQFP (PLQP0064KB-C)	Ψjt	0.80	°C/W	JESD 51-2 and 51-7	
	100-pin LQFP (PLQP0100KB-B)		0.76		compliant	
	144-pin LQFP (PLQP0144KA-B)		0.63			

Note 1. The values are reference values when the 4-layer board is used. Thermal resistance depends on the number of layers or size of the board. For details, refer to the JEDEC standards.

2.2.7.1 Calculation guide of I_{CC}max

Table 2.12 shows the power consumption of each unit.

Table 2.12Power consumption of each unit (1 of 2)

Dynamic current/ Leakage current	MCU Domain	Category	Item	Frequency [MHz]	Current [uA/MHz]	Current ^{*1} [mA]
Leakage current	Analog	LDO and Leak ^{*2}	Ta = 75 °C ^{*3}	-	_	21.22
			Ta = 85 °C ^{*3}	_	_	25.22
			Ta = 95 °C ^{*3}	—	—	30.22
			Ta = 105 °C ^{*3}	-	—	37.42

Ψit: "结"到"顶部中心外壳"的热阻(℃W)

- ●总功耗=电压×(漏电流+动态电流)
- ●IO漏电流=Σ(IOL×VOL)电压+Σ(IOH×VCC VOH)电压
- ●IO的动态电流=ΣIO(Cin+Cload)×IO开关频率×电压

Cin:输入电容

C负载:输出电容

关于θja和Ψjt,请参阅表2.11。

Table 2.11 热阻

Parameter	Package	Symbol	Value ^{*1}	Unit	测试条件	
Thermal	64-pin LQFP (PLQP0064KB-C)	θja 	38.0	°C/W	符合JESD51-2和51	
Resistance	100-pin LQFP (PLQP0100KB-B)		35.0		-/	
	144-pin LQFP (PLQP0144KA-B)		33.0			
	64-pin LQFP (PLQP0064KB-C)	Ψjt	0.80 °C/W 符合JESE	符合JESD51-2和51		
	100-pin LQFP (PLQP0100KB-B)		0.76		-/	
	144-pin LQFP (PLQP0144KA-B)		0.63			

注1.数值为使用4层板时的参考值。热阻取决于板的层数或尺寸。有关详细信息,请参阅JEDEC标准。

ICCmax的计算指南 2.2.7.1

表2.12显示了每个单元的功耗。

Table 2.12 每个单元的功耗(2个中的1个)

动态电流漏电流	MCU Domain	Category	Item	Frequency [MHz]	Current [uA/MHz]	Current ^{*1} [mA]
漏电流	Analog	LDO和泄漏*2	Ta = 75 °C ^{*3}	-	-	21.22
			Ta = 85 °C ^{*3}	_	_	25.22
			Ta = 95 °C ^{*3}	_	_	30.22
			Ta = 105 °C ^{*3}	_	_	37.42

Table 2.12Power consumption of each unit (2 of 2)

Dynamic current/ Leakage current	MCU Domain	Category	Item	Frequency [MHz]	Current [uA/MHz]	Current ^{*1} [mA]	
Dynamic current	CPU	Operation with Flash and SRAM	Coremark	100	86.493	8.65	
	Peripheral Unit	Timer	GPT16 (4ch) ^{*4}	100	3.548	0.35	
			GPT32 (4ch) ^{*4}	100	3.946	0.39	
			POEG (4 Groups)	50	1.378	0.07	
			AGT (6ch) ^{*4}	50	10.095	0.50	
			RTC	50	5.239	0.26	
			WDT	50	0.722	0.04	
			IWDT	50	0.267	0.01	
		Communication	USBFS	50	8.788	0.44	
		interfaces	SCI (6ch) ^{*4}	100	18.077	1.81	
			IIC (2ch) ^{*4}	50	3.014	0.15	
			CAN (2ch) ^{*4}	50	3.843	0.19	-
			SPI	100	3.394	0.34	
			QSPI	100	2.587	0.26	
			SSIE	50	3.131	0.16	
			SDHI	50	7.074	0.35	<i>1</i> –
		Analog	ADC12 (2 Units)*4	100	4.697	0.47	L.H
			DAC12 (2ch) ^{*4}	100	3.543	0.35	X KX
			TSN	50	0.166	0.01	1=5
		Human machine interfaces	CTSU	50	0.678	0.03	ALLEN
		Event link	ELC	50	1.016	0.05	$\langle \mathcal{F}_{i} \rangle$
		Security	SCE9	100	218.100	21.81	
		Data processing	CRC	100	0.521	0.05	
			DOC	100	0.358	0.04	
		System	CAC	50	0.909	0.05	
		DMA	DMAC	100	5.180	0.52	
			DTC	100	3.792	0.38	

Note 1. The values are guaranteed by design.

Note 2. LDO and Leak are internal voltage regulator's current and MCU's leakage current. It is selected according to the temperature of Ta.

Note 3. Δ (Tj-Ta) = 20 °C is considered to measure the current.

Note 4. To determine the current consumption per channel, group or unit, divide Current [mA] by the number of channels, groups or units.

Table 2.13 shows the outline of operation for each unit.

Table 2.13 Outline of operation for each unit (1 of 2)

Peripheral	Outline of operation
GPT	Operating modes is set to saw-wave PWM mode. GPT is operating with PCLKD.
POEG	Only clear module stop bit.
AGT	AGT is operating with PCLKB.
RTC	RTC is operating with LOCO.

RENESAS

2. Electrical Characteristics

RA4M3 Datasheet

Table 2.12 每个单元的功耗(2个中的2个)

动态电流漏电流	MCU Domain	Category	Item	Frequency [MHz]	Current [uA/MHz]	Current ^{*1} [mA]
动态电流	CPU	操作与 闪存和SRAM	Coremark	100	86.493	8.65
	外围单元	Timer	GPT16 (4ch)*4	100	3.548	0.35
			GPT32 (4ch) ^{*4}	100	3.946	0.39
			POEG (4 Groups)	50	1.378	0.07
			AGT (6ch) ^{*4}	50	10.095	0.50
			RTC	50	5.239	0.26
			WDT	50	0.722	0.04
			IWDT	50	0.267	0.01
		通讯接口	USBFS	50	8.788	0.44
			SCI (6ch) ^{*4}	100	18.077	1.81
			IIC (2ch) ^{*4}	50	3.014	0.15
			CAN (2ch)*4	50	3.843	0.19
			SPI	100	3.394	0.34
			QSPI	100	2.587	0.26
			SSIE	50	3.131	0.16
			SDHI	50	7.074	0.35
		Analog	ADC12 (2 Units)*4	100	4.697	0.47
			DAC12 (2ch) ^{*4}	100	3.543	0.35
			TSN	50	0.166	0.01
		人机界面	CTSU	50	0.678	0.03
		活动链接	ELC	50	1.016	0.05
		Security	SCE9	100	218.100	21.81
		数据处理	CRC	100	0.521	0.05
			DOC	100	0.358	0.04
		System	CAC	50	0.909	0.05
		DMA	DMAC	100	5.180	0.52
			DTC	100	3.792	0.38

注1.数值由设计保证。

注2.LDO和Leak是内部稳压器的电流和MCU的漏电流。

根据Ta的温度选择。

注3.测量电流时考虑∆(Tj-Ta)=20℃。

注4.要确定每个通道、组或单元的电流消耗,请将电流[mA]除以通道

表2.13显示了每个单元的操作概要。

Table 2.13	每个单元的操作概要	(2个中的1个)
------------	-----------	----------

Peripheral	操作概要
GPT	操作模式设置为锯齿波PWM模式。 GPT使用PCLKD运行。
POEG	只清除模块停止位。
AGT	AGT使用PCLKB运行。
RTC	RTC与LOCO一起运行。

R01DS0368EJ0120 Rev.1.20 Dec 2, 2020

RENESAS

、组或单元的数量。

Table 2.13 Outline of operation for each unit (2 of 2)

Peripheral	Outline of operation
WDT	WDT is operating with PCLKB.
IWDT	IWDT is operating with IWDTCLK.
USBFS	Transfer types is set to bulk transfer. USBFS is operating using Full-speed transfer (12 Mbps).
SCI	SCI is transmitting data in clock synchronous mode.
IIC	Communication format is set to I2C-bus format. IIC is transmitting data in master mode.
CAN	CAN is transmitting and receiving data in self-test mode 1.
SPI	SPI mode is set to SPI operation (4-wire method). SPI master/slave mode is set to master mode. SPI is transmitting 8-bit width data.
QSPI	QSPI is issuing Fast Read Quad I/O Instruction.
SSIE	Communication mode is set to Master. System word length is set to 32 bits. Data word length is set to 20 bits. SSIE is transmitting data using I2S format.
SDHI	Transfer bus mode is set to 4-bit wide bus mode. SDHI is issuing CMD24 (single-block write).
ADC12	Resolution is set to 12-bit accuracy. Data registers is set to A/D-converted value addition mode. ADC12 is converting the analog input in continuous scan mode.
DAC12	DAC12 is outputting the conversion result while updating the value of data register.
TSN	TSN is operating.
CTSU	CTSU is operating in self-capacitance single scan mode.
ELC	Only clear module stop bit.
SCE9	SCE9 is executing built-in self test.
CRC	CRC is generating CRC code using 32-bit CRC32-C polynomial.
DOC	DOC is operating in data addition mode.
CAC	Measurement target clocks is set to PCLKB. Measurement reference clocks is set to PCLKB. CAC is measuring the clock frequency accuracy.
DMAC	Bit length of transfer data is set to 32 bits. Transfer mode is set to block transfer mode. DMAC is transferring data from SRAM0 to SRAM0.
DTC	Bit length of transfer data is set to 32 bits. Transfer mode is set to block transfer mode. DTC is transferring data from SRAM0 to SRAM0.

2.2.7.2 Example of T_i calculation

Assumption :

- Package 144-pin LQFP : $\theta ja = 33.0 \text{ °C/W}$
- Ta = 100 °C
- $I_{CC}max = 70 mA$
- $VCC = 3.5 V (VCC = AVCC = VCC_USB)$
- $I_{OH} = 1 \text{ mA}, V_{OH} = VCC 0.5 \text{ V}, 12 \text{ Outputs}$
- $I_{OL} = 20 \text{ mA}, V_{OL} = 1.0 \text{ V}, 8 \text{ Outputs}$
- $I_{OL} = 1 \text{ mA}, V_{OL} = 0.5 \text{ V}, 12 \text{ Outputs}$

RENESAS

Page 31 of 92

RA4M3 Datasheet

Table 2.13	每个单元的操作概要(2个中的2个)
Peripheral	操作概要
WDT	WDT使用PCLKB运行。
IWDT	IWDT使用IWDTCLK运行。
USBFS	传输类型设置为批量传输。 USBFS使用全速传输(12Mbps)运行。
SCI	SCI在时钟同步模式下传输数据。
IIC	通信格式设置为I2C总线格式。 IIC在主机模式下传输数据。
CAN	CAN在自检模式1中发送和接收数据。
SPI	SPI模式设置为SPI操作(4线方法)。 SPI主从模式设置为主模式。 SPI正在传输8位宽度的数据。
QSPI	QSPI正在发出快速读取四线IO指令。
SSIE	通信模式设置为主。 系统字长设置为32位。 数据字长设置为20位。 SSIE使用I2S格式传输数据。
SDHI	传输总线模式设置为4位宽总线模式。 SDHI正在发布CMD24(单块写入)。
ADC12	分辨率设置为12位精度。 数据寄存器设置为AD转换值加法模式。 ADC12在连续扫描模式下转换模拟输入。
DAC12	DAC12在更新数据寄存器值的同时输出转换结果。
TSN	TSN正在运行。
CTSU	CTSU在自电容单次扫描模式下运行。
ELC	只清除模块停止位。
SCE9	SCE9正在执行内置自检。
CRC	CRC使用32位CRC32-C多项式生成CRC码。
DOC	DOC在数据添加模式下运行。
CAC	测量目标时钟设置为PCLKB。 测量参考时钟设置为PCLKB。CAC正在测量时钟 频率精度。
DMAC	传输数据的位长设置为32位。 传输模式设置为块传输模式。 DMAC正在将数据从SRAM0传输到SRAM0。
DTC	传输数据的位长设置为32位。 传输模式设置为块传输模式。 DTC正在将数据从SRAM0传输到SRAM0。

Tj计算示例 2.2.7.2

Assumption :

- Package 144-pin LQFP : $\theta ja = 33.0 \text{ °C/W}$
- Ta = 100 °C
- ●ICC最大值=70mA
- $VCC = 3.5 V (VCC = AVCC = VCC_USB)$
- ●IOH=1mA, VOH=VCC 0.5V, 12个输出
- ●IOL=20mA, VOL=1.0V, 8个输出
- ●IOL=1mA,VOL=0.5V,12路输出

RA4M3 Datasheet

2. Electrical Characteristics

RA4M3 Datasheet

 C_{in} = 8 pF, 32 pi C_{load} = 30 pF, 32 	ns, Input frequency = 10 MHz 2 pins, Output frequency = 10 MHz					
Leakage current of IO	Leakage current of IO = $\Sigma (V_{OL} \times I_{OL}) / Voltage + \Sigma ((VCC - V_{OH}) \times I_{OH}) / Voltage$					
	= (20 mA × 1 V) × 8 / 3.5 V + (1 mA × 0.5 V) × 12 / 3.5 V + ((VCC - (VCC - 0.5 V)) × 1 mA) × 12 / 3.5 V					
	= 45.7 mA + 1.71 mA + 1.71 mA					
	= 49.1 mA					
Dynamic current of IO	= Σ IO (C _{in} + C _{load}) × IO switching frequency × Voltage					
	= ((8 pF × 32) × 10 MHz + (30 pF × 32) × 10 MHz) × 3.5 V					
	= 42.6 mA					
Total power consumpti	on = Voltage × (Leakage current + Dynamic current)					
	= (70 mA × 3.5 V) + (49.1 mA + 42.6 mA) × 3.5 V					
	= 566 mW (0.566 W)					
Tj = Ta + θ ja × Total power consumption						
= 100 °C + 33.0 °C	/W × 0.566W					

= 118.7 °C

2.3 AC Characteristics

2.3.1 Frequency

Table 2.14 Operation frequency value in high-speed mode

Parameter		Symbol	Min	Тур	Мах	Unit
Operation frequency	System clock (ICLK)	f	-	-	100	MHz
	Peripheral module clock (PCLKA)		—	-	100	
	Peripheral module clock (PCLKB)]	—	—	50	
	Peripheral module clock (PCLKC)]	*2	—	50	
	Peripheral module clock (PCLKD)	1	—	—	100	
	Flash interface clock (FCLK)]	*1	-	50	

Note 1. FCLK must run at a frequency of at least 4 MHz when programming or erasing the flash memory.

Note 2. When the ADC12 is used, the PCLKC frequency must be at least 1 MHz.

Table 2.15 Operation frequency value in low-speed mode

Parameter		Symbol	Min	Тур	Мах	Unit
Operation frequency	System clock (ICLK)	f	-	_	1	MHz
	Peripheral module clock (PCLKA)]	—	—	1]
	Peripheral module clock (PCLKB)		—	-	1	
	Peripheral module clock (PCLKC) *2		*2	-	1	
	Peripheral module clock (PCLKD)		—	-	1	
	Flash interface clock (FCLK) ^{*1}]	_	_	1]

Note 1. Programming or erasing the flash memory is disabled in low-speed mode.

Note 2. When the ADC12 is used, the PCLKC frequency must be set to at least 1 MHz.

●Cin=8pF,32引 ●C负载=30pF,	脚,输入频率=10MHz 32引脚,输出频率=10MHz
IO的漏电流=Σ(VOL×I	DL)电压+Σ((VCCVOH)×IOH)电压
	= (20 mA × 1 V) × 8 / 3.5 V + (1 mA × 0.5 V) ×
	= 45.7 mA + 1.71 mA + 1.71 mA
	= 49.1 mA
IO的动态电流	=ΣΙΟ(Cin+Cload)×ΙΟ开关频率×电压
	= ((8 pF × 32) × 10 MHz + (30 pF × 32) × 10 M
	= 42.6 mA

总功耗

=电压×(漏电流+动态电流)

- = (70 mA × 3.5 V) + (49.1 mA + 42.6 mA) × 3.5 V
- = 566 mW (0.566 W)
- Tj =Ta+θja×总功耗
 - = 100 °C + 33.0 °C/W × 0.566W

= 118.7 °C

交流特性 2.3

2.3.1 Frequency

Table 2.14 高速模式下的运行频率值

Parameter		Symbol	Min	Тур	Мах	Unit
运行频率	系统时钟(ICLK)	f	—	_	100	MHz
	外设模块时钟(PCLKA)		—	_	100	
	外设模块时钟(PCLKB)		—	_	50	
	外设模块时钟(PCLKC)		*2	_	50	
	外设模块时钟(PCLKD)		—	_	100	
	闪存接口时钟(FCLK)		*1	_	50	

注1.在对闪存进行编程或擦除时,FCLK必须以至少4MHz的频率运行。 注2.使用ADC12时,PCLKC频率必须至少为1MHz。

Table 2.15 低速模式下的运行频率值

Parameter		Symbol	Min	Тур	Мах	Unit
运行频率	系统时钟(ICLK)	f	—	—	1	MHz
	外设模块时钟(PCLKA)		—	—	1	
	外设模块时钟(PCLKB)		_	—	1]
	外围模块时钟(PCLKC)*2		_*2	_	1	
	外设模块时钟(PCLKD)		_	—	1	
	闪存接口时钟(FCLK)*1		_	_	1	

注1.在低速模式下禁止对闪存进行编程或擦除。 注2.使用ADC12时,PCLKC频率必须设置为至少1MHz。

RENESAS

= 12 / 3.5 V + ((VCC - (VCC - 0.5 V)) × 1 mA) × 12 / 3.5 V

MHz) × 3.5 V

Operation frequency

Note 2. The ADC12 cannot be used.

EXTAL external clock input cycle time

EXTAL external clock rise time

EXTAL external clock fall time

Main clock oscillator frequency

LOCO clock oscillation frequency

ILOCO clock oscillation frequency

MOCO clock oscillation frequency

HOCO clock oscillator oscillation

EXTAL external clock input high pulse width

EXTAL external clock input low pulse width

Main clock oscillation stabilization wait time (crystal)*1

LOCO clock oscillation stabilization wait time

MOCO clock oscillation stabilization wait time

HOCO clock oscillation stabilization wait time*2

Clock Timing

Operation frequency value in Subosc-speed mode

Peripheral module clock (PCLKA)

Peripheral module clock (PCLKB)

Flash interface clock (FCLK)*1

Note 1. Programming or erasing the flash memory is disabled in Subosc-speed mode.

Peripheral module clock (PCLKC) *2 Peripheral module clock (PCLKD)

Clock timing except for sub-clock oscillator (1 of 2)

System clock (ICLK)

Table 2.16

Parameter

2.3.2

Table 2.17

Parameter

2. Electrical Characteristics

Unit

kHz

Max

36.1

36.1

36.1 36.1

36.1 36.1

Unit Test conditions

Figure 2.7

Figure 2.8

Figure 2.9

MHz | –20 ≤ Ta ≤ 105°C

–40 ≤ Ta ≤ –20°C

–40 ≤ Ta ≤ 105°C

is ±50 ppm.

Figure 2.10

Sub-clock frequency accuracy

Symbol

Min

29.4

29.4

Max

5.0

5.0

24

__*1

60.4

16.5

9.2

15.0

16.22

18.25

20.28

16.29

18.32

20.36

16.040

18.045

20.050

μs

ps

ms

MHz

MHz

μs

64.7

1.8

200

240

174.9

36.0448

ns

ns

ns

ns

ns

MHz

ms

kHz

μs

kHz

MHz

μs

Тур

Min

41.66

15.83

15.83

8

13.5

6.8

15.78

17.75

19.72

15.71

17.68

19.64

15.960

17.955

19.950

29.4912 32.768

15

16

18

20

16

18

20

16

18

20

±85

8

Symbol

t_{EXcyc}

t_{EXH}

t_{EXL}

t_{EXr}

t_{EXf}

f_{MAIN}

f_{LOCO}

tLOCOWT

f_{ILOCO}

F_{MOCO}

tмосомт

f_{HOCO16}

f_{HOCO18}

f_{HOCO20}

f_{HOCO16}

f_{HOCO18}

f_{HOCO20}

f_{HOCO16}

f_{HOCO18}

f_{HOCO20}

t_{носоwт}

t_{FLLWT}

tMAINOSCWT

Тур

RA4M3 Datasheet

Table 2.16	Subosc-speed模式下的运行频率值					
Parameter		Symbol	Min	Тур	Мах	Unit
运行频率	系统时钟(ICLK)	f	29.4	—	36.1	kHz
	外设模块时钟(PCLKA)		_	_	36.1	
	外设模块时钟(PCLKB)		_	_	36.1	
	外围模块时钟(PCLKC)*2		—	_	36.1	
	外设模块时钟(PCLKD)		_	_	36.1	
	闪存接口时钟(FCLK)*1		29.4	_	36.1	

注1.在Subosc速度模式下,编程或擦除闪存被禁用。 注2.不能使用ADC12。

时钟时序 2.3.2

除副时钟振荡器外的时钟时序(2个中的1个) Table 2.17

Parameter		Symbol	Min	Тур	Max	Unit	测试条件
EXTAL外部时钟输入周期时间		t _{EXcyc}	41.66	—	-	ns	Figure 2.7
EXTAL外部时钟输入高脉冲宽度		t _{EXH}	15.83	—	_	ns	
EXTAL外部时钟输入低脉冲宽度		t _{EXL}	15.83	—	_	ns	
EXTAL外部时钟上升时间		t _{EXr}	_	—	5.0	ns	
EXTAL外部时钟下降时间		t _{EXf}	_	—	5.0	ns	
主时钟振荡器频率		f _{MAIN}	8	—	24	MHz	_
主时钟振荡稳定等待时间(晶体)*1		t _{MAINOSCWT}	_	—	*1	ms	Figure 2.8
LOCO时钟振荡频率		f _{LOCO}	29.4912	32.768	36.0448	kHz	_
LOCO时钟振荡稳定等待时间		t _{LOCOWT}	_	—	60.4	μs	Figure 2.9
ILOCO时钟振荡频率		f _{ILOCO}	13.5	15	16.5	kHz	_
MOCO时钟振荡频率		F _{MOCO}	6.8	8	9.2	MHz	_
MOCO时钟振荡稳定等待时间		t _{MOCOWT}	_	—	15.0	μs	_
HOCO时钟振荡器振荡频率	Without FLL	f _{HOCO16}	15.78	16	16.22	MHz	–20 ≤ Ta ≤ 105°C
		f _{HOCO18}	17.75	18	18.25		
		f _{HOCO20}	19.72	20	20.28		
		f _{HOCO16}	15.71	16	16.29		–40 ≤ Ta ≤ –20°C
		f _{HOCO18}	17.68	18	18.32		
		f _{HOCO20}	19.64	20	20.36		
	With FLL	f _{HOCO16}	15.960	16	16.040		40≤Ta≤105℃副时钟频率精 度为±50ppm
		f _{HOCO18}	17.955	18	18.045		
		f _{HOCO20}	19.950	20	20.050		
HOCO时钟振荡稳定等待时间*2	1	t _{HOCOWT}	_	—	64.7	μs	—
HOCO周期抖动		—	—	±85	_	ps	—
FLL稳定等待时间		t _{FLLWT}	—	—	1.8	ms	_
锁相环时钟频率		f _{PLL}	100	—	200	MHz	_
PLL2时钟频率		f _{PLL2}	120	—	240	MHz	—
PLLPLL2时钟振荡稳定等待时间		t _{PLLWT}	_	_	174.9	μs	Figure 2.10

HOCO period jitter

FLL stabilization wait time

frequency

100 PLL clock frequency f_{PLL} PLL2 clock frequency 120 f_{PLL2} PLL/PLL2 clock oscillation stabilization wait time t_{PLLWT}

With FLL

Without FLL

Dec 2, 2020

Table 2.17 Clock timing except for sub-clock oscillator (2 of 2)

Parameter		Symbol	Min	Тур	Max	Unit	Test conditions
PLL/PLL2 period jitter	f _{PLL} , f _{PLL2} ≥ 120MHz	—	-	±100	-	ps	-
	f _{PLL} , f _{PLL2} < 120MHz	—	-	±120	—	ps	-
PLL/PLL2 long term jitter		_	_	±300	_	ps	Term: 1µs, 10µs

Note 1. When setting up the main clock oscillator, ask the oscillator manufacturer for an oscillation evaluation, and use the results as the recommended oscillation stabilization time. Set the MOSCWTCR register to a value equal to or greater than the recommended value.

After changing the setting in the MOSCCR.MOSTP bit to start main clock operation, read the OSCSF.MOSCSF flag to confirm that it is 1, and then start using the main clock oscillator.

Note 2. This is the time from release from reset state until the HOCO oscillation frequency (f_{HOCO}) reaches the range for guaranteed operation.

Table 2.18 Clock timing for the sub-clock oscillator

Parameter	Symbol	Min	Тур	Max	Unit	Test conditions
Sub-clock frequency	f _{SUB}	_	32.768	—	kHz	_
Sub-clock oscillation stabilization wait time	t _{SUBOSCWT}	_	_	*1	s	Figure 2.11

Note 1. When setting up the sub-clock oscillator, ask the oscillator manufacturer for an oscillation evaluation and use the results as the recommended oscillation stabilization time.

After changing the setting in the SOSCCR.SOSTP bit to start sub-clock operation, only start using the sub-clock oscillator after the sub-clock oscillation stabilization time elapses with an adequate margin. A value that is two times the value shown is recommended.

Figure 2.7 EXTAL external clock input timing

Main clock oscillation start timing Figure 2.8

RA4M3 Datasheet

除副时钟振荡器外的时钟时序(2of2) Table 2.17

Parameter		Symbol	Min	Тур	Max	Unit	测试条件
PLLPLL2周期抖动	f _{PLL} , f _{PLL2} ≥ 120MHz	—	-	±100	—	ps	—
	f _{PLL} , f _{PLL2} < 120MHz	—	_	±120	_	ps	—
PLLPLL2长期抖动		—	_	±300	_	ps	Term: 1µs, 10µs

注1.设置主时钟振荡器时,请向振荡器制造商索取振荡评估,并将结果作为推荐的振荡稳定时间。将MOSCWTCR寄存器设置为等于或大于推 荐值的值。更改MOSCCR.MOSTP位的设置以启动主时钟操作后,读取OSCSF.MOSCSF标志以确认其为1,然后开始使用主时钟振荡器。

注2.这是从复位状态释放到HOCO振荡频率(fHOCO)达到保证工作范围的时间。

副时钟振荡器的时钟时序 Table 2.18

Parameter	Symbol	Min	Тур	Max	Unit	测试条件
Sub-clock frequency	f _{SUB}	—	32.768		kHz	-
副时钟振荡稳定等待时间	t _{SUBOSCWT}	_	_	*1	s	Figure 2.11

注1.设置副时钟振荡器时,请咨询振荡器制造商进行振荡评估,并将结果作为推荐的振荡稳定时间。更改SOSCCR.SOSTP位的设置以启动副时 钟操作后,只有在副时钟振荡稳定时间过去并留有足够余量后才开始使用副时钟振荡器。建议使用两倍于显示值的值。

RENESAS

2. Electrical Characteristics

	2、	电气特性
--	----	------

Figure 2.9 LOCO clock oscillation start timing

Figure 2.10 PLL/PLL2 clock oscillation start timing

Sub-clock oscillation start timing Figure 2.11

2.3.3 **Reset Timing**

Table 2.19 Reset timing (1 of 2)

Parameter		Symbol	Min	Тур	Max	Unit	Test conditions
RES pulse width	Power-on	t _{RESWP}	0.7	—	-	ms	Figure 2.12
	Deep Software Standby mode			_	—	ms	Figure 2.13
	Software Standby mode, Subosc-speed t mode		0.3	—	_	ms	
	All other	t _{RESW}	200	—	—	μs	
Wait time after RES cancellation		t _{RESWT}	—	37.3	41.2	μs	Figure 2.12

Figure 2.11

2.3.3 重置时间

Table 2.19 重置时间(1of2)

Parameter		符号最小值典型值		Мах	单元	则试条件	
RES脉冲宽度	Power-on	t _{RESWP}	0.7	-	—	ms	Figure 2.12
	t _{RESWD}	0.6	—	—	ms	Figure 2.13	
软件待机模式,Subosc速度模式		t _{RESWS}	0.3	_	—	ms	
	所有其他	t _{RESW}	200	—	—	μs	
RES取消后的等待时间		t _{RESWT}	—	37.3	41.2	μs	Figure 2.12

Table 2.19 Reset timing (2 of 2)

Parameter	Symbol	Min	Тур	Мах	Unit	Test conditions
Wait time after internal reset cancellation (IWDT reset, WDT reset, software reset, SRAM parity error reset, SRAM ECC error reset, bus master MPU error reset, TrustZone error reset, Cache parity error reset)	t _{RESW2}	-	324	397.7	μs	_

Figure 2.12 RES pin input timing under the condition that VCC exceeds V_{POR} voltage threshold

Figure 2.13 Reset input timing

2.3.4 Wakeup Timing

Timing of recovery from low power modes (1 of 2) Table 2.20

Parameter			Symbol	Min	Тур	Max	Unit	Test conditions
Recovery time from Ci Software Standby os mode ^{*1}	Crystal resonator connected to main clock	System clock source is main clock oscillator ^{*2}	t _{SBYMC} *13	-	2.1	2.4	ms	Figure 2.14 The division ratio of all
		System clock source is PLL with main clock oscillator ^{*3}	t _{SBYPC} *13	_	2.2	2.6	ms	OSCILIATORS IS 1.
	External clock input to main clock oscillator	System clock source is main clock oscillator ^{*4}	t _{SBYEX} *13	-	45	125	μs	
		System clock source is PLL with main clock oscillator ^{*5}	t _{SBYPE} *13	_	170	255	μs	
	System clock source is su	t _{SBYSC} *13	-	0.7	0.8	ms		
	System clock source is LO	t _{SBYLO} *13	-	0.7	0.9	ms		
	System clock source is HOCO clock oscillator*8		t _{SBYHO} *13	—	55	130		μs
	System clock source is PLL with HOCO ^{*9}		t _{SBYPH} *13	—	175	265	μs	
	System clock source is M	OCO clock oscillator ^{*10}	t _{SBYMO} *13	-	35	65	μs	

Table 2.19 重置时间(2之2)

RA4M3 Datasheet

Parameter 内部复位取消后的等待时间(IWDT复位、WDT复位、软件复位、SRAM奇 误复位、SRAMECC错误复位、总线主控MPU错误复位、TrustZone错误复 奇偶校验错误复位)

Figure 2.12 VCC超过VPOR电压阈值条件下的RES引脚输入时序

唤醒时间 2.3.4

从低功耗模式恢复的时间(2个中的1个) Table 2.20

Parameter			Symbol	Min	Тур	Max	单元测试条件		
恢复时间从 软件待机模式*1	连接到主时钟振荡器的 晶体谐振器	系统时钟源为主时钟振 荡器*2	t _{SBYMC} *13	—	2.1	2.4	ms	5 Figure 2.14 所有振荡器的分频比 — 为1。	
		系统时钟源为 带主时钟振荡器的P LL*3	t _{SBYPC} *13	_	2.2	2.6	ms		
	主时钟振荡器的外部 时钟输入	系统时钟源为主时钟振 荡器*4	t _{SBYEX} *13	—	45	125	μs		
		系统时钟源为 带主时钟振荡器的P LL*5	t _{SBYPE} *13	_	170	255	μs		
	系统时钟源为副时钟振荡器	t _{SBYSC} *13	—	0.7	0.8	ms			
	系统时钟源为LOCO*7*11	t _{SBYLO} *13	—	0.7	0.9	ms			
	系统时钟源为HOCO时钟振	t _{SBYHO} *13	—	55	130	μs			
	系统时钟源是带有HOCO*9	t _{SBYPH} *13	_	175	265	μs			
	系统时钟源为MOCO时钟挪	t _{SBYMO} *13	—	35	65	μs			

R01DS0368EJ0120 Rev.1.20 Dec 2, 2020

	符号最小值典型值			Мах	单元测试条件							
奇偶校验错 夏位、缓存	t _{RESW2}	_	324	397.7	μs							

RA4M3 Datasheet

Table 2.20 Timing of recovery from low power modes (2 of 2)

Parameter		Symbol	Min	Тур	Max	Unit	Test conditions
Recovery time from Deep Software	DPSBYCR.DEEPCUT[1] = 0 and DPSWCR.WTSTS[5:0] = 0x0E		-	0.38	0.54	ms	Figure 2.15
Standby mode	DPSBYCR.DEEPCUT[1] = 1 and DPSWCR.WTSTS[5:0] = 0x19	t _{DSBY}	—	0.55	0.73	ms	
Wait time after cancell	ation of Deep Software Standby mode	t _{DSBYWT}	56	—	57	t _{cyc}	
Recovery time from Software Standby	High-speed mode when system clock source is HOCO (20 MHz)	t _{SNZ}	—	35 ^{*12}	70 ^{*12}	μs	Figure 2.16
mode to Shooze mode	High-speed mode when system clock source is MOCO (8 MHz)	t _{SNZ}	-	11 ^{*12}	14 ^{*12}	μs	

Note 1. The recovery time is determined by the system clock source. When multiple oscillators are active, the recovery time can be determined with the following equation:

Total recovery time = recovery time for an oscillator as the system clock source + the longest tSBYOSCWT in the active oscillators tSBYOSCWT for the system clock + 2 LOCO cycles (when LOCO is operating) + Subosc is oscillating and MSTPC0 = 0 (CAC module stop))

Note 2. When the frequency of the crystal is 24 MHz (Main Clock Oscillator Wait Control Register (MOSCWTCR) is set to 0x05) and the greatest value of the internal clock division setting is 1.

When the frequency of PLL is 200 MHz (Main Clock Oscillator Wait Control Register (MOSCWTCR) is set to 0x05) and the greatest Note 3 value of the internal clock division setting is 4.

When the frequency of the external clock is 24 MHz (Main Clock Oscillator Wait Control Register (MOSCWTCR) is set to 0x00) and Note 4 the greatest value of the internal clock division setting is 1.

- Note 5. When the frequency of PLL is 200 MHz (Main Clock Oscillator Wait Control Register (MOSCWTCR) is set to 0x00) and the greatest value of the internal clock division setting is 4.
- Note 6. The Sub-clock oscillator frequency is 32.768 KHz and the greatest value of the internal clock division setting is 1.
- Note 7. The LOCO frequency is 32.768 KHz and the greatest value of the internal clock division setting is 1.
- Note 8. The HOCO frequency is 20 MHz and the greatest value of the internal clock division setting is 1.
- Note 9. The PLL frequency is 200 MHz and the greatest value of the internal clock division setting is 4.
- Note 10. The MOCO frequency is 8 MHz and the greatest value of the internal clock division setting is 1.
- Note 11. In Subosc-speed mode, the sub-clock oscillator or LOCO continues oscillating in Software Standby mode.
- Note 12. When the SNZCR RXDREQEN bit is set to 0, the following time is added as the power supply recovery time: 16 µs (typical), 48 µs (maximum).
- Note 13. The recovery time can be calcurated with the equation of tSBYOSCWT + tSBYSEQ. And they can be determined with the fol-lowing value and equation. For n, the greatest value is selected from among the internal clock division settings.

Wakeup time	ТҮР		MAX				
	tSBYOSCWT	tSBYSEQ	tSBYOSCWT	tSBYSEQ			
tSBYMC	(MSTS[7:0]*32 + 3) / 0.262	35 + 18 / fICLK + 4n / fMAIN	(MSTS[7:0]*32 + 14 / 0.236	62 + 18 / fICLK + 4n / fMAIN	μs		
tSBYPC	(MSTS[7:0]*32 + 34) / 0.262	35 + 18 / flCLK + 4n / fPLL	(MSTS[7:0]*32 + 45) / 0.236	62 + 18 / flCLK + 4n / fPLL	μs		
tSBYEX	10	35 + 18 / fICLK + 4n / fEXMAIN	62	62 + 18 / fICLK + 4n / fEXMAIN	μs		
tSBYPE	135	35 + 18 / flCLK + 4n / fPLL	192	62 + 18 / fICLK + 4n / fPLL	μs		
tSBYSC	0	35 + 18 / fICLK + 4n / fSUB	0	62 + 18 / fICLK + 4n / fSUB	μs		
tSBYLO	0	35 + 18 / fICLK + 4n / fLOCO	0	62 + 18 / fICLK + 4n / fLOCO	μs		
tSBYHO	20	35 + 18 / fICLK + 4n / fHOCO	67	62 + 18 / fICLK + 4n / fHOCO	μs		
tSBYPH	140	35 + 18 / fICLK + 4n / fPLL	202	62 + 18 / fICLK + 4n / fPLL	μs		
tSBYMO	0	35 + 18 / fICLK + 4n / fMOCO	0	62 + 18 / fICLK + 4n / fMOCO	μs		

从低功耗模式恢复的时间(2个中的2个) Table 2.20 Parameter 恢复时间从 DPSBYCR.DEEPCUT[1] = 0 and 深度软件待机 DPSWCR.WTSTS[5:0] = 0x0E 模式 DPSBYCR.DEEPCUT[1] = 1 and DPSWCR.WTSTS[5:0] = 0x19 取消深度软件待机模式后的等待时间 恢复时间从 系统时钟源为高速模式 软件待机模式到 HOCO (20 MHz) 含睡模式 系统时钟源为高速模式 MOCO (8 MHz)

注1.恢复时间由系统时钟源决定。当多个振荡器处于活动状态时,恢复时间可以通过以下公式确定:总恢复时间=一个振荡器作为系统时钟源 的恢复时间+系统时钟有效振荡器中的最长tSBYOSCWTtSBYOSCWT+2个LOCO周期(当LOCO正在运行)+Subosc正在振荡且MSTPC0=0(CA C模块停止))

注2.当晶振频率为24MHz(主时钟振荡器等待控制寄存器(MOSCWTCR)设置为0x05)且内部时钟分频设置的最大值为1时。

注3.当PLL的频率为200MHz(主时钟振荡器等待控制寄存器(MOSCWTCR)设置为0x05)且内部时钟分频设置的最大值为4时。

注4.当外部时钟频率为24MHz(主时钟振荡器等待控制寄存器(MOSCWTCR)设置为0x00)且内部时钟分频设置的最大值为1时。

注5.当PLL的频率为200MHz(主时钟振荡器等待控制寄存器(MOSCWTCR)设置为0x00)且内部时钟分频设置的最大值为4时。

注6.副时钟振荡器频率为32.768KHz,内部时钟分频设置的最大值为1。 注7.LOCO频率为32.768KHz,内部时钟分频设置的最大值为1。 注8.HOCO频率为20MHz,内部时钟分频设置最大值为1。注9.PLL频率为200MHz,内部时钟分频设置最大 值为4。注10.MOCO频率为8MHz,内部时钟分频设置的最大值为1。

注11.在Subosc速度模式下,副时钟振荡器或LOCO在软件待机模式下继续振荡。 注12.当SNZCR.RXDREQEN位设置为0时,添加以下时间作为电源恢复时间:16μs(典型值)、48μs(最大值)。

注13.恢复时间可以用tSBYOSCWT+tSBYSEO等式计算。它们可以用下面的值和方程来确定。对于n,从内部时钟分频设置中选择最大值。

唤醒时间典型值			MAX		Unit
	tSBYOSCWT	tSBYSEQ	tSBYOSCWT	tSBYSEQ	
tSBYMC	(MSTS[7:0]*32 + 3) / 0.262	35 + 18 / fICLK + 4n / fMAIN	(MSTS[7:0]*32 + 14 / 0.236	62 + 18 / fICLK + 4n / fMAIN	μs
tSBYPC	(MSTS[7:0]*32 + 34) / 0.262	35 + 18 / flCLK + 4n / fPLL	(MSTS[7:0]*32 + 45) / 0.236	62 + 18 / fICLK + 4n / fPLL	μs
tSBYEX	10	35 + 18 / fICLK + 4n / fEXMAIN	62	62 + 18 / fICLK + 4n / fEXMAIN	μs
tSBYPE	135	35 + 18 / fICLK + 4n / fPLL	192	62 + 18 / flCLK + 4n / fPLL	μs
tSBYSC	0	35 + 18 / fICLK + 4n / fSUB	0	62 + 18 / fICLK + 4n / fSUB	μs
tSBYLO	0	35 + 18 / fICLK + 4n / fLOCO	0	62 + 18 / flCLK + 4n / fLOCO	μs
tSBYHO	20	35 + 18 / fICLK + 4n / fHOCO	67	62 + 18 / fICLK + 4n / fHOCO	μs
tSBYPH	140	35 + 18 / fICLK + 4n / fPLL	202	62 + 18 / flCLK + 4n / fPLL	μs
tSBYMO	0	35 + 18 / fICLK + 4n / fMOCO	0	62 + 18 / fICLK + 4n / fMOCO	μs

Symbol	Min	Тур	Max	单元测试条件		
t _{DSBY}	_	0.38	0.54	ms	Figure 2.15	
t _{DSBY}	_	0.55	0.73	ms		
t _{DSBYWT}	56	_	57	t _{cyc}		
t _{SNZ}	_	35 ^{*12}	70 ^{*12}	μs	Figure 2.16	
t _{SNZ}	_	11 ^{*12}	14 ^{*12}	μs		

2. Electrical Characteristics

R01DS0368EJ0120 Rev.1.20 Dec 2, 2020

Figure 2.15 Deep Software Standby mode cancellation timing

RA4M3 Datasheet

Figure 2.16 Recovery timing from Software Standby mode to Snooze mode

2.3.5 NMI and IRQ Noise Filter

NMI and IRQ noise filter Table 2.21

Parameter	Symbol	Min	Тур	Max	Unit	Test conditions			
NMI pulse	t _{NMIW}	200	-	-	ns	NMI digital filter	t _{Pcyc} × 2 ≤ 200 ns		
width		t _{Pcyc} × 2 ^{*1}	-	_			t _{Pcyc} × 2 > 200 ns		
		200	_	_		NMI digital filter	t _{NMICK} × 3 ≤ 200 ns		
		t _{NMICK} × 3.5 ^{*2}	-	-		enabled	t _{NMICK} × 3 > 200 ns		
IRQ pulse	t _{IRQW}	200	_	_	ns	IRQ digital filter	t _{Pcyc} × 2 ≤ 200 ns		
width		t _{Pcyc} × 2 ^{*1}	-	-		disabled	t _{Pcyc} × 2 > 200 ns		
		200	_	_]	IRQ digital filter	t _{IRQCK} × 3 ≤ 200 ns		
		t _{IRQCK} × 3.5 ^{*3}	_	_			t _{IRQCK} × 3 > 200 ns		

R01DS0368EJ0120 Rev.1.20 Dec 2, 2020

2. Electrical Characteristics

深度软件待机模式

内部复位(低 电平有效)

深度软件待机复位(低 电平有效)

Oscillator

IRQ

Figure 2.15 深度软件待机模式取消时序

Figure 2.16 从软件待机模式到贪睡模式的恢复时间

NMI和IRQ噪声滤波器 2.3.5

NMI和IRQ噪声滤波器 Table 2.21

Parameter	Symbol	Min	Тур	Max	Unit	测试条件			
NMI脉冲	t _{NMIW}	200	—	-	ns	NMI数字滤波器	t _{Pcyc} × 2 ≤ 200 ns		
		t _{Pcyc} × 2 ^{*1}	—	-]	赤巾	t _{Pcyc} × 2 > 200 ns		
		200	—	—	1	启用NMI数字滤 波器	t _{NMICK} × 3 ≤ 200 ns		
		t _{NMICK} × 3.5 ^{*2}	_	-]		t _{NMICK} × 3 > 200 ns		
IRQ脉冲 宽度	t _{IRQW}	200	_	-	ns	IRQ数字滤波器 ^{埜田}	t _{Pcyc} × 2 ≤ 200 ns		
<i>JUD</i>		t _{Pcyc} × 2 ^{*1}	—	-			t _{Pcyc} × 2 > 200 ns		
		200	—	-		启用IRQ数字滤 波器	t _{IRQCK} × 3 ≤ 200 ns		
		t _{IRQCK} × 3.5 ^{*3}	_	—			t _{IRQCK} × 3 > 200 ns		

R01DS0368EJ0120 Rev.1.20 Dec 2, 2020

2. Electrical Characteristics

RA4M3 Datasheet

- Note: 200 ns minimum in Software Standby mode.
- If the clock source is switched, add 4 clock cycles of the switched source. Note:
- Note 1. t_{Pcyc} indicates the PCLKB cycle.
- Note 2. t_{NMICK} indicates the cycle of the NMI digital filter sampling clock.
- Note 3. t_{IRQCK} indicates the cycle of the IRQi digital filter sampling clock.

IRQ interrupt input timing Figure 2.18

I/O Ports, POEG, GPT, AGT, and ADC12 Trigger Timing 2.3.6

Table 2.22 I/O ports, POEG, GPT, AGT, and ADC12 trigger timing

GPT32 Conditions:

High drive output is selected in the Port Drive Capability bit in the PmnPFS register. AGT Conditions:

Middle drive output is selected in the Port Drive Capability bit in the PmnPFS register.

Parameter			Symbol	Min	Max	Unit	Test conditions
I/O ports	Input data pulse width		t _{PRW}	1.5	-	t _{Pcyc}	Figure 2.19
POEG	POEG input trigger pulse width		t _{POEW}	3	-	t _{Pcyc}	Figure 2.20
GPT	Input capture pulse width	Single edge	t _{GTICW}	1.5	-	t _{PDcyc}	Figure 2.21
		Dual edge		2.5	-	1	
	GTIOCxY output skew (x = 0 to 3, Y = A or B)	Middle drive buffer	t _{GTISK} *1	-	4	ns	Figure 2.22
		High drive buffer	-	_	4		
	GTIOCxY output skew (x = 4 to 7, Y = A or B)	Middle drive buffer		_	4	-	
		High drive buffer		_	4		
	GTIOCxY output skew (x = 0 to 7, Y = A or B)	Middle drive buffer	-	—	6		
		High drive buffer	-	—	6		
	OPS output skew GTOUUP, GTOULO, GTOVI GTOVLO, GTOWUP, GTOW	OPS output skew GTOUUP, GTOULO, GTOVUP, GTOVLO, GTOWUP, GTOWLO			5	ns	Figure 2.23
AGT	AGTIO, AGTEE input cycle		t _{ACYC} *2	100	-	ns	Figure 2.24
	AGTIO, AGTEE input high w	AGTIO, AGTEE input high width, low width			-	ns	1
	AGTIO, AGTO, AGTOA, AG	t _{ACYC2}	62.5	-	ns	1	
ADC12	ADC12 trigger input pulse w	idth	t _{TRGW}	1.5	-	t _{Pcyc}	Figure 2.25

Note: t_{Pcyc}: PCLKB cycle, t_{PDcyc}: PCLKD cycle.

Note 1. This skew applies when the same driver I/O is used. If the I/O of the middle and high drivers is mixed, operation is not guaranteed. Note 2. Constraints on input cycle:

学滤波器采样时钟的周期。 NMI Figure 2.17 NMI中断输入时序 IRQ IRQ Figure 2.18 IRQ中断输入时序 IRQ IRQ Figure 2.18 IRQ中断输入时序 2.3.6 IO端口、POEG、GPT、AGT和/ Table 2.22 IO端口、POEG、GPT、AGT和ADC13 GPT32 Conditions: 在PmnPFS寄存器的端口驱动能力位中选择电间驱动输出。 Parameter I/O ports 输入数据脉冲宽度 POEG POEG输入触发脉冲宽度 GTIOCXY输出偏移 (x= 中间驱动; 高驱动缓; GTIOCXY输出偏移 (x= 中间驱动; 高驱动缓; GTIOCXY输出偏移 (x= 中间驱动; 高驱动缓; OPS输出偏差 GTOUUP, GTOULO, GTOVUP, GTOUUP, GTOULO, GTOVUP, GTOUUP, GTOULO, GTOVUP, AGT AGTIO、AGTEE输入周期 AGTUO AGTIO、AGTEE输入周期	期。 HIROCK表示I	源的4个时钟	时钟源切换,则增加切 PCLKB周期。 示NMI数字滤波器采样	NOTE: 软件付t Note: 如果时转 主1.tPcyc表示PC 主2.tNMICK表示1
Figure 2.17 NMI中断输入时序 Figure 2.17 NMI中断输入时序 IRQ IRQ Figure 2.18 IRQ中断输入时序 2.3.6 IO端口、POEG、GPT、AGT和ADC13 GPT32 Conditions: CPMPPS寄存器的端口驱动能力位中选择高驱动输出。 AGT Conditions: 在PmnPFS寄存器的端口驱动能力位中选择高驱动输出。 POEG POEG输入触发脉冲宽度 POEG POEG输入触发脉冲宽度 GPT 输入捕捉脉冲宽度 Q313, Y=A或B) 高驱动缓3 GTIOCXY输出偏移 (x= 中间驱动结 高驱动缓3 GTIOCXYGTOLO, GTOVUP, GTOVLO, GTOVLO, GTOVUP, GTOVLO, GTOVUP, GTOVLO, GTOVUP, GTOVLO, GTOVUP, GTOVLO, GTOVUP, GTOVLO, GTOVLO, GTOVUP, GTOVUP, GTOVUP, GTOVLO, GTOVUP, GTOVU		F1 F37F37G3 7	时钟的周期。	字滤波器采样时转
Figure 2.17 NMI中断输入时序 IRQ IRQ Figure 2.18 IRQ中断输入时序 2.3.6 IO端口、POEG、GPT、AGT和// Table 2.22 IO端口、POEG、GPT、AGT和ADC13 GPT32 Conditions: Conditions: dePmnPFS寄存器的端口驱动能力位中选择高驱动输出。 AGT 输入数据脉冲宽度 POEG POEG输入触发脉冲宽度 POEG POEG输入触发脉冲宽度 GTIOCXY输出偏移 (x= 中间驱动线 GTOULP, GTOULO, GTOVUP, GTOULO GTOVUP, GTOULO, GTOVUP, GTOULO, GTOVUP, GTOVLO AGT AGTIO、AGTEE输入周期		NMI		
Figure 2.18 IRQ中断输入时序 2.3.6 IO端口、POEG、GPT、AGT和A Table 2.22 IO端口、POEG、GPT、AGT和ADC13 GPT32 Conditions: 在PmnPFS寄存器的端口驱动能力位中选择高驱动输出。 AGT Conditions: 在PmnPFS寄存器的端口驱动能力位中选择中间驱动输出。 AGT Conditions: 在PmnPFS寄存器的端口驱动能力位中选择中间驱动输出。 Parameter /// I/O ports 输入数据脉冲宽度 POEG POEG输入触发脉冲宽度 GPT 输入捕捉脉冲宽度 单边 双刀 GTIOCXY输出偏差 (x= 中间驱动线 0到3, Y=A或B) 高驱动线3 GTIOCXY输出偏移 (x= 中间驱动线 0到7, Y=A或B) 高驱动线3 GTIOCXY输出偏移 (x= 中间驱动线 面UPS输出偏差 GTOUUP, GTOULO, GTOVUP, GTOVLO, GTOVLO, GTOVUP, GTOVLO,			 NMI中断输入时	Figure 2.17
Figure 2.18 IRQ中断输入时序 2.3.6 IO端口、POEG、GPT、AGT和ADC12 GPT32 Conditions: Conditions: 在PmnPFS寄存器的端口驱动能力位中选择高驱动输出。 AGT 输入数据脉冲宽度 POEG POEG输入触发脉冲宽度 POEG POEG输入触发脉冲宽度 GPT 输入排捉脉冲宽度 单边 双刀 GTIOCXY输出偏移(x= 中间驱动线 ④到3, Y=A或B) 高驱动缓2 GTIOCXY输出偏移(x= 中间驱动线 ④到7, Y=A或B) 高驱动缓2 OPS输出偏差 OPS输出偏差 OPS输出偏差 GTIOUP, GTOULO, GTOVUP, GTOUUP, GTOULO, GTOVUP, GTOUUP, GTOUUP, GTOUUP, GTOULO, GTOVUP, GTOUUP, GTOUUP, GTOULO, GTOVUP, GTOULO, GTOWLO		IRQ ·		
Parameter I/O ports 输入数据脉冲宽度 POEG POEG输入触发脉冲宽度 GPT 输入捕捉脉冲宽度 单边 Image: state of the state o			IO编口、POEG	2.3.6 IC
I/O ports 输入数据脉冲宽度 POEG POEG输入触发脉冲宽度 GPT 输入捕捉脉冲宽度 输入捕捉脉冲宽度 单边 双刀 GTIOCXY输出偏差(x= 0到3, Y=A或B) 中间驱动线 GTIOCXY输出偏移(x= 日间驱动线 GTIOCXY输出偏移(x= 日间驱动线 GTIOCXY输出偏移(x= 日间驱动线 GTIOCXY输出偏移(x= 日间驱动线 GTIOCXY输出偏移 高驱动线 OPS输出偏差 GTOULO, GTOVUP, GTOVLO GTOUUP, GTOULO, GTOVUP, GTOWLO GTOVLO, GTOWUP, GTOWLO AGTIO、AGTEE输入周期 AGTIO、AGTEE输入高速	ADC12触发F 。 i出。	bPT、AGT和 选择高驱动输 选择中间驱动	IO端口、POEG IO端口、POEG、 tions: 译器的端口驱动能力位。 ns: 译器的端口驱动能力位。	2.3.6 IC Fable 2.22 GPT32 Conditior EPmnPFS寄存器 AGT Conditions: EPmnPFS寄存器
POEG POEG输入触发脉冲宽度 单边 GPT 输入捕捉脉冲宽度 单边 GTIOCXY输出偏差 (x= 0到3, Y=A或B) 中间驱动线 GTIOCXY输出偏移 (x= 4到7, Y=A或B) 中间驱动线 GTIOCXY输出偏移 (x= 4到7, Y=A或B) 中间驱动线 GTIOCXY输出偏移 (x= 0到7, Y=A或B) 中间驱动线 GTIOCXY输出偏移 (x= 0到7, Y=A或B) 中间驱动线 GTIOCXY输出偏移 (x= 0到7, Y=A或B) 中间驱动线 GTIOCXY输出偏差 GTOUUP, GTOULO, GTOVUP, GTOVLO, GTOWUP, GTOWLO AGTOUUP, GTOULO, GTOVUP, GTOVLO, GTOWUP, GTOWLO AGTIO、AGTEE输入周期 AGTIO、AGTEE输入高度	ADC12触发的 。 i出。	BPT、AGT 选择高驱动输 选择中间驱动	IO端口、POEG IO端口、POEG、 tions: 异器的端口驱动能力位 ^r ns: 异器的端口驱动能力位 ^r	2.3.6 IC Fable 2.22 GPT32 Condition 至PmnPFS寄存器 GT Conditions: 至PmnPFS寄存器 Parameter
GPT 输入捕捉脉冲宽度 単辺 取刀 GTIOCxY输出偏差 (x= 0到3, Y=A或B) 中间驱动结 高驱动缓; GTIOCxY输出偏移 (x= 4到7, Y=A或B) 中间驱动结 高驱动缓; GTIOCxY输出偏移 (x= 4到7, Y=A或B) 中间驱动结 高驱动缓; GTIOCxY输出偏移 (x= 0到7, Y=A或B) 中间驱动结 高驱动缓; OPS输出偏差 GTOUUP, GTOULO, GTOVUP, GTOVLO, GTOWUP, GTOWLO AGTIO、AGTEE输入周期 AGTIO、AGTEE输入周期 AGTIO、AGTEE输入周期	ADC12触发的 。 i出。	GPT、AGT和 选择高驱动输 选择中间驱动	IO端口、POEG IO端口、POEG、 tions: 浮器的端口驱动能力位。 察器的端口驱动能力位。 输入数据脉冲宽度	2.3.6 IC Fable 2.22 GPT32 Condition 至PmnPFS寄存器 AGT Conditions: 至PmnPFS寄存器 Parameter I/O ports
GTIOCxY输出偏差(x= 0到3, Y=A或B) 中间驱动约 高驱动缓》 GTIOCxY输出偏移(x= 4到7, Y=A或B) 中间驱动约 高驱动缓》 GTIOCxY输出偏移(x= 4到7, Y=A或B) 中间驱动约 高驱动缓》 GTIOCxY输出偏移(x= 0到7, Y=A或B) 中间驱动约 高驱动缓》 OPS输出偏差 GTOUUP, GTOULO, GTOVUP, GTOVLO, GTOWUP, GTOWLO AGTIO、AGTEE输入周期 AGTIO、AGTEE输入周期 4GTIO、AGTEE输入周期	ADC12触发 。 ;出。	GPT、AGT和 选择高驱动输 选择中间驱动	IO端口、POEG IO端口、POEG、 tions: F器的端口驱动能力位 ss: F器的端口驱动能力位 体入数据脉冲宽度 POEG输入触发脉冲	2.3.6 IC Fable 2.22 GPT32 Condition 至PmnPFS寄存器 AGT Conditions: 至PmnPFS寄存器 Parameter I/O ports POEG
OTIOCAT 編出 編定 (X= 1113 迎动) O到3, Y=A或B) 高驱动缓) GTIOCXY输出偏移 (x= 中间驱动) 4到7, Y=A或B) 高驱动缓) GTIOCXY输出偏移 (x= 中间驱动) ③驱动缓) 高驱动缓) GTIOCXY输出偏移 (x= 中间驱动) ③驱动缓) 高驱动缓) GTIOCXY输出偏移 (x= 010 № OPS输出偏差 GTOUUP, GTOULO, GTOVUP, GTOVLO, GTOVUP, GTOVLO, GTOVUD, GTOVLO AGT AGTIO、AGTEE输入周期	ADC12触发 。 ;出。 <u>力</u>	bPT、AGT和 选择高驱动输 选择中间驱动	IOJ端口、POEG IO端口、POEG、 tions: 异器的端口驱动能力位。 ss: 子器的端口驱动能力位。 输入数据脉冲宽度 POEG输入触发脉冲 输入捕捉脉冲宽度	2.3.6 IC Fable 2.22 GPT32 Conditions 至PmnPFS寄存器 GT Conditions: 至PmnPFS寄存器 Parameter I/O ports POEG GPT
GTIOCxY输出偏移(x= 4到7, Y=A或B) 中间驱动结 高驱动缓发 GTIOCxY输出偏移(x= 0到7, Y=A或B) 中间驱动结 高驱动缓发 OPS输出偏差 GTOUUP, GTOULO, GTOVUP, GTOVLO, GTOWUP, GTOWLO 高驱动缓发 AGT AGTIO、AGTEE输入周期	ADC12触发的 。 ;出。 <u>2</u>]]]]]]]]]]]]]]	BPT、AGT和 选择高驱动输 选择中间驱动	IOy硫山、POEG IO端口、POEG、 tions: 浮器的端口驱动能力位。 常器的端口驱动能力位。 输入数据脉冲宽度 POEG输入触发脉冲 输入捕捉脉冲宽度	2.3.6 IC Fable 2.22 GPT32 Conditions 至PmnPFS寄存器 AGT Conditions: 至PmnPFS寄存器 Parameter I/O ports POEG GPT
4到7, Y=A或B) 高驱动缓) GTIOCXY输出偏移(x= 0到7, Y=A或B) 中间驱动线) GTIOCXY输出偏移(x= 0到7, Y=A或B) 中间驱动线) OPS输出偏差 GTOUUP, GTOULO, GTOVUP, GTOVLO, GTOWLO, GTOVUP, GTOVLO, GTOWLO AGT AGTIO、AGTEE输入周期 AGTIO、AGTEE输入高度 低度	ADC12触发 。 ;出。 <u>力</u> 了 可驱动缓冲器 风动缓冲器	5PT、AGT和 选择高驱动输 选择中间驱动 。 度 =	IOy而山、POEG IO端口、POEG、 tions: 异器的端口驱动能力位中 ns: 异器的端口驱动能力位中 加速力能力在中 的端口驱动能力位中 加速力能力的 有关数据脉冲宽度 POEG输入触发脉冲 输入捕捉脉冲宽度 GTIOCxY输出偏差 0到3,Y=A或B)	2.3.6 IC Fable 2.22 GPT32 Conditions 至PmnPFS寄存器 AGT Conditions: 至PmnPFS寄存器 Parameter I/O ports POEG GPT
GTIOCxY输出偏移(x= 0到7, Y=A或B) 中间驱动结高驱动缓发 OPS输出偏差 GTOUUP, GTOULO, GTOVUP, GTOVLO, GTOWUP, GTOWLO AGT AGTIO、AGTEE输入周期 AGTIO、AGTEE输入高期	ADC12触发的 。 ;出。 力 了 可驱动缓冲器 可驱动缓冲器	5PT、AGT和 选择高驱动输 选择中间驱动 。 定度	IOy硫山、POEG IO端口、POEG、 itons: F器的端口驱动能力位 ms: F器的端口驱动能力位 ms: F器的端口驱动能力位 ms: FROKTALLANCALLA	2.3.6 IC Fable 2.22 GPT32 Conditions 至PmnPFS寄存器 AGT Conditions: 至PmnPFS寄存器 Parameter I/O ports POEG GPT
0到7, Y=A或B) 高驱动缓; OPS输出偏差 GTOUUP, GTOULO, GTOVUP, GTOVLO, GTOVLO, GTOVLO, GTOVLO AGT AGTIO、AGTEE输入周期 AGTIO、AGTEE输入高度、低度	ADC12触发 。 i出。 立 可 驱动缓冲器 区动缓冲器 区动缓冲器 区动缓冲器	5PT、AGT和 选择高驱动输 选择中间驱动 这度	IOy硫凵、POEG IO端口、POEG、 tions: ₹器的端口驱动能力位 常務入数据脉冲宽度 POEG输入触发脉冲 输入捕捉脉冲宽度 GTIOCxY输出偏差 0到3,Y=A或B) GTIOCxY输出偏移 4到7,Y=A或B)	2.3.6 IC Fable 2.22 GPT32 Conditions: 至PmnPFS寄存器 AGT Conditions: 至PmnPFS寄存器 Parameter I/O ports POEG GPT
OPS输出偏差 GTOUUP, GTOULO, GTOVUP, GTOVLO, GTOWUP, GTOWLO AGT AGTIO、AGTEE输入周期	ADC12触发 。 此。 立 了 郭驱动缓冲器 郭驱动缓冲器 逐动缓冲器 到驱动缓冲器 到驱动缓冲器 到驱动缓冲器	5PT、AGT和 选择高驱动输 选择中间驱动 度 =	IOy硫山、POEG IO端口、POEG、 tions: 弄器的端口驱动能力位。 ms: 弄器的端口驱动能力位。 和入数据脉冲宽度 POEG输入触发脉冲 输入捕捉脉冲宽度 GTIOCxY输出偏差 0到3,Y=A或B) GTIOCxY输出偏移 4到7,Y=A或B)	2.3.6 IC Fable 2.22 GPT32 Conditions 至PmnPFS寄存器 AGT Conditions: 至PmnPFS寄存器 Parameter I/O ports POEG GPT
AGT AGTIO、AGTEE输入周期	ADC12触发 。 。 此。 立 了 可驱动缓冲器 区动缓冲器 区动缓冲器 区动缓冲器	GPT、AGT和 选择高驱动输 选择中间驱动 选择中间驱动	IOy硫凵、POEG IOy硫凵、POEG、 IO端口、POEG、 tions: 浮器的端口驱动能力位。 常器的端口驱动能力位。 常器的端口驱动能力位。 常器的端口驱动能力位。 和入数据脉冲宽度 POEG输入触发脉冲 输入捕捉脉冲宽度 GTIOCxY输出偏移 4到7,Y=A或B) GTIOCxY输出偏移 0到7,Y=A或B)	2.3.6 IC Fable 2.22 GPT32 Conditions: 至PmnPFS寄存器 AGT Conditions: 至PmnPFS寄存器 Parameter I/O ports POEG GPT
AGTIO AGTEE協入宣衆 任衆	ADC12触发 。 。 。 」出。	GTOVUP, GTOVUP, GTOVUP,	IOy而山、POEG IO端口、POEG、 IO端口、POEG、 Io端口、POEG、 Io端口驱动能力位で SF器的端口驱动能力位で SF器的端口驱动能力位で Maxama State FOEG输入触发脉冲 输入数据脉冲宽度 POEG输入触发脉冲 输入捕捉脉冲宽度 GTIOCxY输出偏差 GTIOCxY输出偏移 4到7,Y=A或B) GTIOCxY输出偏移 6JTOCXY和出偏移 6JTOCXY和LCANON	2.3.6 IC Fable 2.22 GPT32 Conditions 至PmnPFS寄存器 AGT Conditions: 至PmnPFS寄存器 Parameter I/O ports POEG GPT
	ADC12触发 。 。 。 。 〕 〕 〕 〕 〕 〕 〕 〕 〕 〕 〕 〕 〕 〕 〕	GTOVUP, GTOVUP, GTOVUP, 可期	IOu端口、POEG IO端口、POEG、 IO端口、POEG、 IO端口、POEG、 IO端口驱动能力位で 第器的端口驱动能力位で 第器的端口驱动能力位で 第番入数据脉冲宽度 POEG输入触发脉冲 输入捕捉脉冲宽度 GTIOCxY输出偏差 0到3,Y=A或B) GTIOCxY输出偏移 4到7,Y=A或B) GTIOCxY输出偏移 0到7,Y=A或B) OPS输出偏差 GTOUUP,GTOULO GTOVLO,GTOWU	2.3.6 IC Fable 2.22 GPT32 Conditions: 至PmnPFS寄存器 AGT Conditions: 至PmnPFS寄存器 PoEG GPT AGT
AGTIO、AGTO、AGTOA、AGTOB输出周期	ADC12触发 。 。 。 」出。 立 了 可 驱动缓冲器 可 驱动缓冲器 可 驱动缓冲器 可 驱动缓冲器 可 驱动缓冲器 可 驱动缓冲器	GTOVUP, GTOVUP, GTOVUP, GTOWLO	IOy编 LI、 POEG IO端 LI、 POEG、 IO端 LI、 POEG、 IIO端 LI、 POEG、 IIO端 LI、 POEG、 IIO端 LI、 POEG、 IIO IIIO IIIIIIIIIIIIIIIIIIIIIIIIIIIII	2.3.6 IC Fable 2.22 GPT32 Conditions: 至PmnPFS寄存器 Parameter I/O ports POEG GPT AGT
ADC12 ADC12触发绘入胶油安在	ADC12触发 。)出。 立 了 可 驱动缓冲器 可 驱动缓冲器 可 驱动缓冲器 可 驱动缓冲器 回 四 四 四 四 四 四 四 四 四 四 四 四 四	GTOVUP, GTOVUP, GTOVUP, GTOVUP, GTOVLO 引期 高宽、低宽	IOy而山、POEG IO端口、POEG、 IO端口、POEG、 IO端口、POEG、 IO端口驱动能力位。 POEG输入触发脉冲宽度 POEG输入触发脉冲 输入捕捉脉冲宽度 GTIOCxY输出偏差 OTIOCxY输出偏移 4到7,Y=A或B) GTIOCxY输出偏移 0到7,Y=A或B) GTIOCxY输出偏移 0到7,Y=A或B) OPS输出偏差 GTOUUP,GTOULO GTOVLO,GTOWU AGTIO、AGTEE输入 AGTIO、AGTEE输入	2.3.6 IC Fable 2.22 GPT32 Conditions: 至PmnPFS寄存器 Parameter I/O ports POEG GPT AGT

Note: t_{Pcyc}: PCLKB cycle, t_{PDcyc}: PCLKD cycle. 注1.当使用相同的驱动器IO时,此偏差适用。如果中高驱动器的IO混合使用,则无法保证运行。 注2.输入周期的限制:

Symbol	Min	Max	Unit	测试条件
PRW	1.5	—	t _{Pcyc}	Figure 2.19
POEW	3	_	t _{Pcyc}	Figure 2.20
GTICW	1.5		t _{PDcyc}	Figure 2.21
	2.5			
GTISK ^{*1}	—	4	ns	Figure 2.22
	—	4		
	—	4		
	—	4		
	—	6		
	—	6		
GTOSK	—	5	ns	Figure 2.23
ACYC ^{*2}	100	_	ns	Figure 2.24
ackwh, t _{ackwl}	40	_	ns	
ACYC2	62.5	_	ns	
TRGW	1.5	_	t _{Pcyc}	Figure 2.25

2. Electrical Characteristics

RA4M3 Datasheet

不切换源时钟时:tPcyc×2<tACYC应满足。 切换源时钟时:tPcyc×6<tACYC应满足。

When not switching the source clock: $t_{\mathsf{Pcyc}} \times 2 < t_{\mathsf{ACYC}}$ should be satisfied. When switching the source clock: $t_{\mathsf{Pcyc}} \times 6 < t_{\mathsf{ACYC}}$ should be satisfied.

Figure 2.22 GPT output delay skew

Dec 2, 2020

输出延迟

2、电气特性

RA4M3 Datasheet

Figure 2.24 AGT input/output timing

Figure 2.25 ADC12 trigger input timing

2.3.7 CAC Timing

Table 2.23 CAC timing

Parameter			Symbol	Min	Тур	Max	Unit	Test conditions
CAC	CACREF input pulse	t _{PBcyc} ≤ t _{cac} ^{*1}	t _{CACREF}	$4.5 \times t_{cac} + 3 \times t_{PBcyc}$	—	—	ns	_
	width	t _{PBcyc} > t _{cac} *1		$5 \times t_{cac} + 6.5 \times t_{PBcyc}$	_	—	ns	

RENESAS

Page 42 of 92

R01DS0368EJ0120 Rev.1.20 Dec 2, 2020

in	Тур	Max	Unit	测试条件
$5 \times t_{cac} + 3 \times t_{PBcyc}$	_	—	ns	-
× t _{cac} + 6.5 × t _{PBcyc}	_	—	ns	

Note: t_{PBcyc} : PCLKB cycle. Note 1. t_{cac} : CAC count clock source cycle.

SCI Timing 2.3.8

Table 2.24 SCI timing (1)

Conditions: High drive output is selected in the Port Drive Capability bit in the PmnPFS register.

ara	ameter		Symbol	Min	Max	Unit	Test conditions
CI	Input clock cycle	Asynchronous	t _{Scyc}	4	—	t _{Pcyc}	Figure 2.26
		Clock synchronous		6	-]	
	Input clock pulse width			0.4	0.6	t _{Scyc}	
	Input clock rise time		t _{SCKr}	-	5	ns	
	Input clock fall time		t _{SCKf}	—	5	ns	
	Output clock cycle	Asynchronous	t _{Scyc}	6 (other than SCI1, SCI2) 8 (SCI1, SCI2)	-	t _{Pcyc}	
		Clock synchronous		4	-	1	
	Output clock pulse width		t _{SCKW}	0.4	0.6	t _{Scyc}	
	Output clock rise time	Dutput clock rise time		—	5	ns	
	Output clock fall time		t _{SCKf}	—	5	ns	
	Transmit data delay	Clock synchronous master mode (internal clock)	t _{TXD}	_	5	ns	Figure 2.27
		Clock synchronous slave mode (external clock)	t _{TXD}	_	25	ns	
	Receive data setup time	Clock synchronous master mode (internal clock)	t _{RXS}	15	-	ns	
		Clock synchronous slave mode (external clock)	t _{RXS}	5	-	ns	
	Receive data hold time	Clock synchronous	t _{RXH}	5	_	ns	

Note: t_{Pcyc}: PCLKA cycle.

Figure 2.26 SCK clock input/output timing

RA4M3 Datasheet

Note: t_{PBcyc}: PCLKB cycle. 注1.tcac: CAC计数时钟源周期。

SCI时序 2.3.8

Table 2.24 SCI时序(1)

条件:在PmnPFS寄存器的端口驱动能力位中选择高驱动输出。

Pa	Parameter				最大	单位	测试条件
SCI	- 输入时钟周期	Asynchronous	t _{Scyc}	4	—	t _{Pcyc}	Figure 2.26
		时钟同步		6	-]	
	输入时钟脉冲宽度	•	t _{SCKW}	0.4	0.6	t _{Scyc}	
	输入时钟上升时间		t _{SCKr}	—	5	ns	
	输入时钟下降时间		t _{SCKf}	—	5	ns	
	输出时钟周期 Asynchronous		t _{Scyc}	6 (other than SCI1, SCI2) 8 (SCI1, SCI2)	-	t _{Pcyc}	
		时钟同步		4	-	1	
	输出时钟脉冲宽度		t _{SCKW}	0.4	0.6	t _{Scyc}	
	输出时钟上升时间		t _{SCKr}	—	5	ns	
	输出时钟下降时间		t _{SCKf}	—	5	ns	
	传输数据延迟	时钟同步主模式(内部时钟)	t _{TXD}	_	5	ns	Figure 2.27
		时钟同步从机模式(外部时钟)	t _{TXD}	_	25	ns	
	接收数据建立时间时钟同步主模式(内部时钟)		t _{RXS}	15	-	ns	
		时钟同步从机模式(外部时钟)	t _{RXS}	5	-	ns	
	接收数据保持时间	时钟同步	t _{RXH}	5	-	ns	

Note: t_{Pcyc}: PCLKA cycle.

2. Electrical Characteristics

RA4M3 Datasheet

SCI input/output timing in clock synchronous mode Figure 2.27

Table 2.25 SCI timing (2)

Conditions: High drive output is selected in the Port Driv	e Capability bit in the F	PmnPFS register.
--	---------------------------	------------------

Parameter			Symbol	Min	Max	Unit	Test conditions		
Simple SPI	SCK clock cycle output (master)		t _{SPcyc}	4	65536	t _{Pcyc}	Figure 2.28	1	
	SCK clock cycle input (slave)			6	65536]			
	SCK clock high pulse width		t _{SPCKWH}	0.4	0.6	t _{SPcyc}			
	SCK clock low pulse width SCK clock rise and fall time		t _{SPCKWL}	0.4	0.6	t _{SPcyc}			
			t _{SPCKr} , t _{SPCKf}	_	5	ns		L Y	
	Data input setup time	master	t _{SU}	15	_	ns	Figure 2.29 to Figure	K.	
	Slave SS input setup time]	5	_	ns	2.32	56.	
			t _H	5	—	ns			
			t _{LEAD}	1	-	t _{SPcyc}			
	SS input hold time		t _{LAG}	1	-	t _{SPcyc}			
	Data output delay	master	t _{OD}	_	5	ns			
		slave		_	25	ns			
	Data output hold time		t _{OH}	-5	_	ns			
Data rise and fall time SS input rise and fall time Slave access time			t _{Dr} , t _{Df}	_	5	ns			
			t _{SSLr} , t _{SSLf}	—	5	ns			
			t _{SA}	—	3 × t _{Pcyc} + 25	ns	Figure 2.32		
	Slave output release time		t _{REL}	_	3 × t _{Pcyc} + 25	ns]		

Note: t_{Pcyc}: PCLKA cycle.

Figure 2.27 时钟同步模式下的SCI输入输出时序

Table 2.25 SCI时序(2)

左/止。		
余件:	住PmnPFS奇仔菇的端口驱动能刀似屮选拴局驱动输出。	

Parameter			Symbol	Min	Max	Unit	测试条件
简单的SPI	SCK时钟周期输出(主机)		t _{SPcyc}	4	65536	t _{Pcyc}	Figure 2.28
	SCK时钟周期输入(从机)			6	65536		
	SCK时钟高脉冲宽度		t _{SPCKWH}	0.4	0.6	t _{SPcyc}	
	SCK时钟低脉冲宽度		t _{SPCKWL}	0.4	0.6	t _{SPcyc}	
	SCK时钟上升和下降时间		t _{SPCKr} , t _{SPCKf}	_	5	ns	
	数据输入建立时间 master		t _{SU}	15	_	ns	图2.29至图2.32
		slave		5	_	ns	
	数据输入保持时间	t _H	5	_	ns		
	SS输入建立时间	t _{LEAD}	1	_	t _{SPcyc}		
	SS输入保持时间	t _{LAG}	1	_	t _{SPcyc}		
	数据输出延迟	master	t _{OD}	—	5	ns	
		slave		—	25	ns	
	数据输出保持时间		t _{OH}	-5	_	ns	
	数据上升和下降时间		t _{Dr} , t _{Df}	—	5	ns	
	SS输入上升和下降时间		t _{SSLr} , t _{SSLf}	_	5	ns	
	从站访问时间		t _{SA}	_	3 × t _{Pcyc} + 25	ns	Figure 2.32
	从机输出释放时间		t _{REL}	_	3 × t _{Pcyc} + 25	ns	

Note: t_{Pcyc}: PCLKA cycle.

2. Electrical Characteristics

RA4M3 Datasheet

Figure 2.28 SCI simple SPI mode clock timing

Figure 2.29 CKPH=1时主机的SCI简单SPI模式时序

2. Electrical Characteristics

Figure 2.30 SCI simple SPI mode timing for master when CKPH = 0

Figure 2.31 CKPH=1时从机的SCI简单SPI模式时序

RA4M3 Datasheet

SCI simple SPI mode timing for slave when CKPH = 0 Figure 2.32

SCI timing (3) Table 2.26

Conditions: Middle drive output is selected in the Port Drive Capability bit in the PmnPFS register.

Parameter		Symbol	Min	Max	Unit	Test conditions
Simple IIC	Simple IIC SDA input rise time		—	1000	ns	Figure 2.33
(Standard mode)	SDA input fall time	t _{Sf}	_	300	ns	
	SDA input spike pulse removal time	t _{SP}	0	4 × t _{IICcyc}	ns	
	Data input setup time	t _{SDAS}	250	_	ns	
	Data input hold time	t _{SDAH}	0	_	ns	
	SCL, SDA capacitive load	C _b *1	_	400	pF	
Simple IIC	SDA input rise time	t _{Sr}	-	300	ns	Figure 2.33
(Fast mode)	SDA input fall time	t _{Sf}	_	300	ns	
	SDA input spike pulse removal time	t _{SP}	0	4 × t _{IICcyc}	ns	
	Data input setup time	t _{SDAS}	100	_	ns	
	Data input hold time	t _{SDAH}	0	-	ns	
	SCL, SDA capacitive load	C _b *1	-	400	pF	

Note: t_{IICcyc} : IIC internal reference clock (IIC ϕ) cycle.

Note 1. C_b indicates the total capacity of the bus line.

SSn input **t**LEAD SCKn CKPOL = 1 input SCKn CKPOL = 0 input tsa tor top LSB OUT (Last data) MISOn MSB OUT output tн ts∪ MOSIn MSB IN input

Note: n = 0 to 4, 9

Figure 2.32 CKPH=0时从机的SCI简单SPI模式时序

Table 2.26 SCI时序(3)

条件:在PmnPFS寄存器的端口驱动能力位中选择中间驱动输出。

Parameter		Symbol	Min	Мах	Unit	测试条件
Simple IIC	SDA输入上升时间	t _{Sr}	_	1000	ns	Figure 2.33
(Standard mode)	SDA输入下降时间	t _{Sf}	-	300	ns	
	SDA输入尖峰脉冲去除时间	t _{SP}	0	4 × t _{IICcyc}	ns	
	数据输入建立时间	t _{SDAS}	250	_	ns	
	数据输入保持时间	t _{SDAH}	0	_	ns	
	SCL, SDA capacitive load	C _b *1	-	400	pF	
Simple IIC	SDA输入上升时间	t _{Sr}	-	300	ns	Figure 2.33
(Fast mode)	SDA输入下降时间	t _{Sf}	-	300	ns	
	SDA输入尖峰脉冲去除时间	t _{SP}	0	4 × t _{IICcyc}	ns	
	数据输入建立时间	t _{SDAS}	100	_	ns	
	数据输入保持时间	t _{SDAH}	0	_	ns	
	SCL, SDA capacitive load	C _b *1	_	400	pF	

Note: tIICcyc:IIC内部参考时钟(IICφ)周期。 注1.Cb表示公交线路的总容量。

R01DS0368EJ0120 Rev.1.20 Dec 2, 2020

RA4M3 Datasheet

SPI

2.3.9 SPI Timing

Table 2.27 SPI timing

Conditions: High drive output is selected in the Port Drive Capability bit in the PmnPFS register.

neter		Symbol	Symbol Min N		Unit	Test conditions
RSPCK clock cycle	Master	t _{SPcyc}	2	4096	t _{Pcyc}	Figure 2.34
	Slave		4	4096	1	
RSPCK clock high pulse width	Master	t _{SPCKWH}	$(t_{SPcyc} - t_{SPCKr} - t_{SPCKf}) / 2 - 3$	-	ns	
	Slave	-	0.4	0.6	t _{SPcyc}	
RSPCK clock low pulse width	Master	t _{SPCKWL}	$(t_{SPcyc} - t_{SPCKr} - t_{SPCKf}) / 2 - 3$	-	ns	
	Slave		0.4	0.6	t _{SPcyc}	
RSPCK clock rise and	Master	t _{SPCKr} , t _{SPCKf}	-	5	ns	
fall time	Slave	-	-	1	μs	
Data input setup time	Master	t _{SU}	4	_	ns	Figure 2.35 to Figure
	Slave		5	-		2.40
Data input hold time	Master (PCLKA division ratio set to 1/2)	t _{HF}	0	_	ns	
	Master (PCLKA division ratio set to a value other than 1/2)	t _H	t _{Pcyc}	_		
	Slave	t _H	20	—]	
SSL setup time Master		t _{LEAD}	N × t _{SPcyc} - 10 ^{*1}	N × t _{SPcyc} + 100 ^{*1}	ns	
	Slave		4 × t _{Pcyc}	-	ns	
SSL hold time	Master	t _{LAG}	N × t _{SPcyc} - 10 ^{*2}	N × t _{SPcyc} + 100 ^{*2}	ns	
	Slave		4 × t _{Pcyc}	-	ns	
Data output delay	Master	t _{OD1}	—	6.3	ns	
		t _{OD2}	-	6.3	1	
	Slave	t _{OD}	—	20		
Data output hold time	Master	t _{OH}	0	_	ns	
	Slave	-	0	-	1	
Successive transmission delay	Master	t _{TD}	t_{SPcyc} + 2 × t_{Pcyc}	8 × t _{SPcyc} + 2 × t _{Pcyc}	ns	
	Slave		4 × t _{Pcyc}			
MOSI and MISO rise	Output	t _{Dr} , t _{Df}	-	5	ns	
and fall time	Input	1	—	1	μs	
SSL rise and fall time	Output	t _{SSLr} , t _{SSLf}	-	5	ns	
	Input		-	1	μs	
Slave access time		t _{SA}	-	25	ns	Figure 2.39 and
Slave output release time		t _{REL}	<u> </u>	25		rigui e 2.40

MOSI和MISO上升和 下降时间

SSL上升和下降时间

从站访问时间

从机输出释放时间

SPI时序 2.3.9 Table 2.27 SPI时序 条件:在PmnPFS寄存器的端口驱动能力位中选择高驱动输出。 Parameter Symbol RSPCK时钟周期 Master t_{SPcyc} Slave RSPCK时钟高脉冲 宽度 Master t_{SPCKWH} Slave RSPCK时钟低脉 冲宽度 Master **t**SPCKWL Slave RSPCK时钟上升和下 降时间 Master t_{SPCKr}, t_{SPCKf} Slave 数据输入建立时间 Master t_{SU} Slave 主控(PCLK A分频比设 置为12) 数据输入保持时间 t_{HF} 主控(PCLKA 分频比设置 为12以外的 值) t_H Slave t_H SSL设置时间 Master t_{LEAD} Slave SSL保持时间 Master t_{LAG} Slave 数据输出延迟 Master t_{OD1} t_{OD2} Slave t_{OD} 数据输出保持时间 Master t_{OH} Slave 连续传输延迟 Master t_{TD}

Slave

Output

Input

Output

Input

t_{Dr}, t_{Df}

t_{SA}

t_{REL}

t_{SSLr}, t_{SSLf}

Min	Max	Unit	测试条件
2	4096	t _{Pcyc}	Figure 2.34
4	4096		
$(t_{SPcyc} - t_{SPCKr} - t_{SPCKf}) / 2 - 3$	—	ns	
0.4	0.6	t _{SPcyc}	
$(t_{SPcyc} - t_{SPCKr} - t_{SPCKf}) / 2 - 3$	_	ns	
0.4	0.6	t _{SPcyc}	
_	5	ns	
_	1	μs	
4	_	ns	图2.35至图2.40
5	—		
0	_	ns	
t _{Pcyc}	_		
20	—		
N × t _{SPcyc} - 10 ^{*1}	N × t _{SPcyc} + 100 ^{*1}	ns	
4 × t _{Pcyc}	—	ns	
N × t _{SPcyc} - 10 ^{*2}	N × t _{SPcyc} + 100 ^{*2}	ns	
4 × t _{Pcyc}	_	ns	
_	6.3	ns	
_	6.3		
_	20		
0	_	ns	
0	_		
t_{SPcyc} + 2 × t_{Pcyc}	8 × t _{SPcyc} + 2 × t _{Pcyc}	ns	
4 × t _{Pcyc}			
-	5	ns	
—	1	μs	
-	5	ns	
—	1	μs	
-	25	ns	图2.39和
-	25	1	⊢igure 2.40

RA4M3 Datasheet

Note:

Note:

t_{Pcyc}: PCLKA cycle.

t_{Pcyc}: PCLKA cycle. Note:

- Note: Must use pins that have a letter appended to their name, for instance "_A", "_B", to indicate group membership. For the SPI
- interface, the AC portion of the electrical characteristics is measured for each group.
- Note 1. N is set to an integer from 1 to 8 by the SPCKD register.
- Note 2. N is set to an integer from 1 to 8 by the SSLND register.

RENESAS

2. Electrical Characteristics

RA4M3 Datasheet

Figure 2.36 SPI timing for master when CPHA = 0 and the bit rate is set to PCLKA/2

2. Electrical Characteristics

RA4M3 Datasheet

Figure 2.39 SPI timing for slave when CPHA = 0

_____当CPHA=1且比特率设置为PCLKA2时,主机的RSPI时序 Figure 2.38

RA4M3 Datasheet

SPI timing for slave when CPHA = 1 Figure 2.40

QSPI Timing 2.3.10

Table 2.28 QSPI timing

Conditions: High drive output is selected in the Port Drive Capability bit in the PmnPFS register.

Parameter		Symbol	Min	Мах	Unit	Test conditions
QSPI	QSPCK clock cycle	t _{QScyc}	2	48	t _{Pcyc}	Figure 2.41
	QSPCK clock high pulse width	t _{QSWH}	t _{QScyc} × 0.4	—	ns	
	QSPCK clock low pulse width	t _{QSWL}	t _{QScyc} × 0.4	_	ns	
	Data input setup time	t _{Su}	10	-	ns	Figure 2.42
	Data input hold time	t _{IH}	0	_	ns	
	QSSL setup time	t _{LEAD}	$(N + 0.5) \times t_{Qscyc} - 5^{*1}$	(N + 0.5) × t _{Qscyc} + 100 ^{*1}	ns	
	QSSL hold time	t _{LAG}	$(N + 0.5) \times t_{Qscyc} - 5^{*2}$	(N + 0.5) × t _{Qscyc} + 100 ^{*2}	ns	
	Data output delay	t _{OD}	—	4	ns	
	Data output hold time	t _{OH}	-3.3	_	ns	
	Successive transmission delay	t _{TD}	1	16	t _{QScyc}	

Note: t_{Pcyc}: PCLKA cycle.

Note 1. N is set to 0 or 1 in SFMSLD.

Note 2. N is set to 0 or 1 in SFMSHD.

Figure 2.40 CPHA=1时从机的SPI时序

QSPI Timing 2.3.10

Table 2.28 QSPI timing

条件:在PmnPFS寄存器的端口驱动能力位中选择高驱动输出。

Parameter		Symbol	Min	Мах	Unit	测试条件
QSPI	QSPCK时钟周期	t _{QScyc}	2	48	t _{Pcyc}	Figure 2.41
	QSPCK时钟高脉冲宽度	t _{QSWH}	t _{QScyc} × 0.4	_	ns	
	QSPCK时钟低脉冲宽度	t _{QSWL}	t _{QScyc} × 0.4	_	ns	
	数据输入建立时间	t _{Su}	10	-	ns	Figure 2.42
	数据输入保持时间	t _{IH}	0	-	ns	
	QSSL设置时间	t _{LEAD}	$(N + 0.5) \times t_{Qscyc} - 5^{*1}$	(N + 0.5) × t _{Qscyc} + 100 ^{*1}	ns	
	QSSL保持时间	t _{LAG}	$(N + 0.5) \times t_{Qscyc} - 5^{*2}$	(N + 0.5) × t _{Qscyc} + 100 ^{*2}	ns	
	数据输出延迟	t _{OD}	-	4	ns	
	数据输出保持时间	t _{OH}	-3.3	-	ns	
	连续传输延迟	t _{TD}	1	16	t _{QScyc}	

Note: t_{Pcyc}: PCLKA cycle. 注1.在SFMSLD中N设置为0或1。注2.在 SFMSHD中N设置为0或1。

Figure 2.41 QSPI clock timing

Figure 2.42 Transmit and receive timing

RATION

RA4M3 Datasheet

IIC Timing 2.3.11

Table 2.29 IIC时序(1)(1of2)

(1)条件:在PmnPFS寄存器的端口驱动能力位中为以下引脚选择中间驱动输出:SDA0_B、SCL0_B、SDA1_B、SCL1_B。(2)以下引脚不需 要设置:SCL0_A、SDA0_A、SCL1_A、SDA1_A。(3)使用名称后附有字母的图钉,例如"_A"或"_B",表示组成员身份。对于IIC接口,测量 每组的电气特性的交流部分。

2.3.11	IIC Timina
	ne mig

Table 2.29 IIC timing (1) (1 of 2)

(1) Conditions: Middle drive output is selected in the Port Drive Capability bit in the PmnPFS register for the following pins: SDA0 B, SCL0_B, SDA1_B, SCL1_B.

(2) The following pins do not require setting: SCL0_A, SDA0_A, SCL1_A, SDA1_A.
(3) Use pins that have a letter appended to their names, for instance "_A" or "_B", to indicate group membership. For the IIC interface, the AC portion of the electrical characteristics is measured for each group.

Parameter		Symbol	Min	Max	Unit	Test conditions
IIC (Otam dans da	SCL input cycle time	t _{SCL}	6 (12) × t _{IICcyc} + 1300	—	ns	Figure 2.43
SMBus) ICFER.FMPE = 0	SCL input high pulse width	t _{SCLH}	3 (6) × t _{IICcyc} + 300	_	ns]
	SCL input low pulse width	t _{SCLL}	3 (6) × t _{IICcyc} + 300	_	ns]
	SCL, SDA rise time	t _{Sr}	—	1000	ns]
	SCL, SDA fall time	t _{Sf}	—	300	ns]
	SCL, SDA input spike pulse removal time	t _{SP}	0	1 (4) × t _{IICcyc}	ns	
	SDA input bus free time when wakeup function is disabled	t _{BUF}	3 (6) × t _{IICcyc} + 300	-	ns	
	SDA input bus free time when wakeup function is enabled	t _{BUF}	$3 (6) \times t_{IICcyc} + 4 \times t_{Pcyc} + 300$	-	ns	
	START condition input hold time when wakeup function is disabled	t _{STAH}	t _{IICcyc} + 300	-	ns	
	START condition input hold time when wakeup function is enabled	t _{STAH}	1 (5) × t_{IICcyc} + t_{Pcyc} + 300	-	ns	
	Repeated START condition input setup time	t _{STAS}	1000	-	ns	
	STOP condition input setup time	t _{STOS}	1000	_	ns	1
	Data input setup time	t _{SDAS}	t _{IICcyc} + 50	_	ns	1
	Data input hold time	t _{SDAH}	0	_	ns	1
	SCL, SDA capacitive load	C _b	-	400	pF	1

Parameter		Symbol	Min	Мах	Unit	测试条件
IIC (Standard meda	SCL输入周期时间	t _{SCL}	6 (12) × t _{IICcyc} + 1300	—	ns	Figure 2.43
(Standard mode, SMBus)	SCL输入高脉冲宽度	t _{SCLH}	SCLH 3 (6) × t _{IICcyc} + 300		ns	
ICFER.FMPE = 0	SCL输入低脉冲宽度	t _{SCLL}	3 (6) × t _{IICcyc} + 300	_	ns	
	SCL、SDA上升时间	t _{Sr}	—	1000	ns	
	SCL、SDA下降时间	t _{Sf}	—	300	ns	
	SCL、SDA输入尖峰脉冲去 除时间	t _{SP}	0	1 (4) × t _{IICcyc}	ns	
	禁用唤醒功能时的SDA输入总 线空闲时间	功能时的SDA输入总 t _{BUF} 3 (6) × t _l 间		_	ns	
	唤醒功能启用时SDA输入总线 空闲时间	t _{BUF}	$\begin{array}{c} 3 \ (6) \times t_{IICcyc} + 4 \times t_{Pcyc} + \\ 300 \end{array}$	— ns		
	禁用唤醒功能时的START条件输入 保持时间	t _{STAH}	t _{IICcyc} + 300	—	ns	
	启用唤醒功能时的START条件输 入保持时间	t _{STAH}	$1 (5) \times t_{IICcyc} + t_{Pcyc} + 300$	—	ns	
	重复启动条件输入建立时间	t _{STAS}	1000	_	ns	
	STOP条件输入建立时间	t _{STOS}	1000	_	ns	
	数据输入建立时间	t _{SDAS}	t _{IICcyc} + 50	_	ns	
	数据输入保持时间	t _{SDAH}	0	—	ns	
	SCL, SDA capacitive load	C _b	_	400	pF	

Table 2.29 IIC timing (1) (2 of 2)

(1) Conditions: Middle drive output is selected in the Port Drive Capability bit in the PmnPFS register for the following pins: SDA0 B, SCL0 B, SDA1 B, SCL1 B.

(2) The following pins do not require setting: SCL0_A, SDA0_A, SCL1_A, SDA1_A.

(3) Use pins that have a letter appended to their names, for instance "_A" or "_B", to indicate group membership. For the IIC interface, the

AC portion of the electrical characteristics is measured for each group.

Parameter		Symbol	Min	Max	Unit	Test conditions
IIC (Feet mede)	SCL input cycle time	t _{SCL}	6 (12) × t _{IICcyc} + 600	—	ns	Figure 2.43
(Fast mode)	SCL input high pulse width	t _{SCLH}	3 (6) × t _{IICcyc} + 300	-	ns	
	SCL input low pulse width	t _{SCLL}	3 (6) × t _{IICcyc} + 300	-	ns	
	SCL, SDA rise time	t _{Sr}	20 × (external pullup voltage/5.5V) ^{*1}	300	ns	-
	SCL, SDA fall time	t _{Sf}	20 × (external pullup voltage/5.5V) ^{*1}	300	ns	
	SCL, SDA input spike pulse removal time	t _{SP}	0	1 (4) × t _{IICcyc}	ns	
	SDA input bus free time when wakeup function is disabled	t _{BUF}	3 (6) × t _{IICcyc} + 300	-	ns	
	SDA input bus free time when wakeup function is enabled	t _{BUF}	$\begin{array}{c} 3 \ (6) \times t_{IICcyc} + 4 \times t_{Pcyc} + \\ 300 \end{array}$	_	ns	
	START condition input hold time when wakeup function is disabled	t _{STAH}	t _{IICcyc} + 300	-	ns	
	START condition input hold time when wakeup function is enabled	t _{STAH}	1 (5) × t_{IICcyc} + t_{Pcyc} + 300	-	ns	
	Repeated START condition input setup time	t _{STAS}	300	—	ns	
	STOP condition input setup time	t _{STOS}	300	_	ns	
	Data input setup time	t _{SDAS}	t _{IICcyc} + 50	_	ns	
	Data input hold time	t _{SDAH}	0	_	ns]
	SCL, SDA capacitive load	Cb	_	400	pF]

RA4M3 Datasheet

IIC时序(1)(2of2) Table 2.29

(1)条件:在PmnPFS寄存器的端口驱动能力位中为以下引脚选择中间驱动输出:SDA0_B、SCL0_B、SDA1_B、SCL1_B。(2)以下引脚不需 要设置:SCL0_A、SDA0_A、SCL1_A、SDA1_A。(3)使用名称后附有字母的图钉,例如"_A"或"_B",表示组成员身份。对于IIC接口,测量 每组的电气特性的交流部分。

Parameter		Symbol	Min	Мах	Unit	测试条件
IIC (Foot mode)	SCL输入周期时间	t _{SCL}	6 (12) × t _{IICcyc} + 600	_	ns	Figure 2.43
(Fast mode)	SCL输入高脉冲宽度	t _{SCLH}	3 (6) × t _{IICcyc} + 300	_	ns	
	SCL输入低脉冲宽度	t _{SCLL}	3 (6) × t _{IICcyc} + 300	_	ns	
	SCL、SDA上升时间	t _{Sr}	20 × (external pullup voltage/5.5V) ^{*1}	300	ns	
	SCL、SDA下降时间	t _{Sf}	20 × (external pullup voltage/5.5V) ^{*1}	300	ns	
	SCL、SDA输入尖峰脉冲去 除时间	t _{SP}	0	1 (4) × t _{IICcyc}	ns	
	禁用唤醒功能时的SDA输入总 线空闲时间	t _{BUF}	$3 (6) \times t_{IICcyc} + 300$		ns	
	唤醒功能启用时SDA输入总线 空闲时间	t _{BUF}	$\begin{array}{l} 3 \ (6) \times t_{IICcyc} + 4 \times t_{Pcyc} + \\ 300 \end{array}$	4 × t _{Pcyc} + n		
	禁用唤醒功能时的START条件输入 保持时间	t _{STAH}	t _{IICcyc} + 300		ns	
	启用唤醒功能时的START条件输 入保持时间	t _{STAH}	1 (5) × t_{IICcyc} + t_{Pcyc} + 300	—	ns	
	重复启动条件输入建立时间	t _{STAS}	300	_	ns	
	STOP条件输入建立时间	t _{STOS}	300	-	ns	
	数据输入建立时间	t _{SDAS}	t _{IICcyc} + 50	_	ns	
	数据输入保持时间	t _{SDAH}	0	_	ns	
	SCL, SDA capacitive load	C _b	—	400	pF	

t_{IICcyc}: IIC internal reference clock (IICφ) cycle, t_{Pcyc}: PCLKB cycle. Note:

Note[.]

Values in parentheses apply when ICMR3.NF[1:0] is set to 11b while the digital filter is enabled with ICFER.NFE set to 1. Must use pins that have a letter appended to their name, for instance "_A", "_B", to indicate group membership. For the IIC Note:

interface, the AC portion of the electrical characteristics is measured for each group.

Note 1. Only supported for SCL0_A, SDA0_A, SCL1_A, and SDA1_A.

tIICcyc: IIC内部参考时钟(IICφ)周期,tPcyc: PCLKB周期。 当ICMR3.NF[1:0]设置为11b且数字滤波器启用且ICFER.NFE设置为1时,括号中的值适用。 必须使用名称后附有字母的引脚,例如"_A"、"_B",以表示组成员身份。对于IIC接口,测量每组的电气特性的交流部分。

注1.仅支持SCL0_A、SDA0_A、SCL1_A和SDA1_A。

Note:

Note:

Note:

RA4M3 Datasheet

IIC timing (2)

Table 2.30

Table 2.30 IIC timing (2)

Setting of the SCL0_A, SDA0_A pins is not required with the Port Drive Capability bit in the PmnPFS register.

Parameter		Symbol	Min	Max	Unit	Test conditions
IIC (Fast-mode+)	SCL input cycle time	t _{SCL}	6 (12) × t _{IICcyc} + 240	-	ns	Figure 2.43
ICFER.FMPE = 1	SCL input high pulse width	t _{SCLH}	3 (6) × t _{IICcyc} + 120	-	ns	
	SCL input low pulse width	t _{SCLL}	3 (6) × t _{IICcyc} + 120	—	ns	
	SCL, SDA rise time	t _{Sr}	—	120	ns	
	SCL, SDA fall time	t _{Sf}	20 × (external pullup voltage/ 5.5V)	120	ns	
	SCL, SDA input spike pulse removal time	t _{SP}	0	1 (4) × tllCcyc	ns	
	SDA input bus free time when wakeup function is disabled	t _{BUF}	3 (6) × t _{IICcyc} + 120	-	ns	
	SDA input bus free time when wakeup function is enabled	t _{BUF}	$\begin{array}{l} 3 (6) \times t_{\text{IICcyc}} + 4 \times \\ t_{\text{Pcyc}} + 120 \end{array}$	-	ns	
	Start condition input hold time when wakeup function is disabled	t _{STAH}	t _{IICcyc} + 120	-	ns	
	START condition input hold time when wakeup function is enabled	t _{STAH}	1 (5) × t _{IICcyc} + t _{Pcyc} + 120	-	ns	
	Restart condition input setup time	t _{STAS}	120	—	ns	
	Stop condition input setup time	t _{STOS}	120	—	ns	
	Data input setup time	t _{SDAS}	t _{IICcyc} + 30	—	ns	
	Data input hold time	t _{SDAH}	0	-	ns	
	SCL, SDA capacitive load	C _b *1	-	550	pF	

Parameter		Symbol	Min	Мах	Unit	测试条件
IIC (Fast-mode+)	SCL输入周期时间	t _{SCL}	6 (12) × t _{IICcyc} + 240	-	ns	Figure 2.43
ICFER.FMPE = 1	SCL输入高脉冲宽度	t _{SCLH}	3 (6) × t _{IICcyc} + 120	—	ns	
	SCL输入低脉冲宽度	t _{SCLL}	3 (6) × t _{IICcyc} + 120	-	ns	
	SCL、SDA上升时间	t _{Sr}	_	120	ns	
	SCL、SDA下降时间	t _{Sf}	20 × (external pullup voltage/ 5.5V)	120	ns	
	SCL、SDA输入尖峰脉冲去 除时间	t _{SP}	0	1 (4) × tIICcyc	ns	
	禁用唤醒功能时的SDA输入总 线空闲时间	t _{BUF}	3 (6) × t _{IICcyc} + 120	-	ns	
	唤醒功能启用时SDA输入总线 空闲时间	t _{BUF}	3 (6) × t _{IICcyc} + 4 × t _{Pcyc} + 120	-	ns	
	禁用唤醒功能时的启动条件输入 保持时间	t _{STAH}	t _{IICcyc} + 120	-	ns]
	启用唤醒功能时的START条件输 入保持时间	t _{STAH}	1 (5) × t _{IICcyc} + t _{Pcyc} + 120	-	ns	
	重启条件输入建立时间	t _{STAS}	120	—	ns	
	停止条件输入建立时间	t _{STOS}	120	—	ns	1
	数据输入建立时间	t _{SDAS}	t _{IICcyc} + 30	—	ns	
	数据输入保持时间	t _{SDAH}	0	_	ns	
	SCL, SDA capacitive load	C _b *1	—	550	pF	

Note: t_{IICcyc}: IIC internal reference clock (IICφ) cycle, t_{Pcyc}: PCLKB cycle.

Note: Values in parentheses apply when ICMR3.NF[1:0] is set to 11b while the digital filter is enabled with ICFER.NFE set to 1. Note 1. Cb indicates the total capacity of the bus line.

Note: tIICcyc: IIC内部参考时钟(IICq)周期,tPcyc: PCLKB周期。 Note: 当ICMR3.NF[1:0]设置为11b且数字滤波器启用且ICFER.NFE设置为1时,括号中的值适用。 注1.Cb表示总线的总容量。 2、电气特性

2. Electrical Characteristics

RA4M3 Datasheet

SDAr

Figure 2.43 I²C bus interface input/output timing

2.3.12 SSIE Timing

Table 2.31 SSIE timing

(1) High drive output is selected with the Port Drive Capability bit in the PmnPFS register.

(2) Use pins that have a letter appended to their names, for instance "A" or "B" to indicate group membership. For the SSIE interface, the AC portion of the electrical characteristics is measured for each group.

				Target spe	Target specification		
Parameter			Symbol	Min.	Max.	Unit	Comments
SSIBCK0 C	Cycle	Master	to	80	—	ns	Figure 2.44
		Slave	tı	80	—	ns	
High level/ low level Rising time/ falling time	High level/ low	Master	t _{HC} /t _{LC}	0.35	—	to	
	level	Slave		0.35	—	tı	
	Rising time/	Master	t _{RC} /t _{FC}	—	0.15	t _O / t _I	
	falling time	Slave		—	0.15	t _O / t _I	
SSILRCK0/ Input se SSIFS0, time SSITXD0, SSIRXD0, Input he	Input set up	Master	t _{SR}	12	—	ns	Figure 2.46,
	time	Slave		12	—	ns	Figure 2.47
	Input hold time	Master	t _{HR}	8	—	ns	
COLDIVITIO		Slave		15	—	ns	
	Output delay	Master	t _{DTR}	-10	5	ns	
	time	Slave		0	20	ns	Figure 2.46, Figure 2.47
	Output delay time from SSILRCK0/ SSIFS0 change	Slave	t _{DTRW}	-	20	ns	Figure 2.48 ^{*1}
GTIOC2A,	Cycle	1	t _{EXcyc}	20	—	ns	Figure 2.45
AUDIO_CLK High level/ lo		evel	t _{EXL} /t _{EXH}	0.4	0.6	t _{EXcyc}	

注1.S、P和Sr表示以下条件: S: 开始条件P: 停止条件 Sr: 重启条件

Figure 2.43 I2C总线接口输入输出时序

SSIE Timing 2.3.12

Table 2.31 SSIE timing

(1)通过PmnPFS寄存器中的端口驱动能力位选择高驱动输出。(2)使用名称后附有字母的引脚,例如"_A"或"_B"来表示组成员身份。对于SSIE接口,测量每组的电气特性的交流部分。

				目标规格			
Parameter			Symbol	Min.	Max.	Unit	Comments
SSIBCK0	Cycle	Master	to	80	-	ns	Figure 2.44
		Slave	t _l	80	—	ns	
	高电平低电平	Master	t _{HC} /t _{LC}	0.35	—	t _O	
		Slave		0.35	—	t _l	
	上升时间下	Master	t _{RC} /t _{FC}	_	0.15	t _O / t _I	
	htt h 1 [b]	Slave		_	0.15	t _O / t _I	
SSILRCK0/	输入建立时	Master	t _{SR}	12	-	ns	Figure 2.46, Figure 2.47
SSIFS0, SSITXD0,		Slave		12	_	ns	
SSIRXD0,	输入保持时间	Master	t _{HR}	8	_	ns	
		Slave		15	—	ns	
	输出延迟时	Master	t _{DTR}	-10	5	ns	
		Slave		0	20	ns	Figure 2.46, Figure 2.47
	SSILRCK0的 输出延迟时 间 SSIFS0 change	Slave	t _{DTRW}		20	ns	Figure 2.48 ^{*1}
GTIOC2A,	Cycle		t _{EXcyc}	20	-	ns	Figure 2.45
AUDIO_CLK	高电平低电平		t _{EXL} /t _{EXH}	0.4	0.6	t _{EXcyc}	1

R01DS0368EJ0120 Rev.1.20 Dec 2, 2020

RENESAS

R01DS0368EJ0120 Rev.1.20 Dec 2, 2020

Note 1. For slave-mode transmission, SSIE has a path, through which the signal input from the SSILRCK0/SSIFS0 pin is used to generate transmit data, and the transmit data is logically output to the SSITXD0 or SSIDATA0 pin.

Figure 2.44 SSIE clock input/output timing

Figure 2.45 Clock input timing

SSIE data transmit and receive timing when SSICR.BCKP = 0 Figure 2.46

RA4M3 Datasheet

注1.对于从模式传输,SSIE有一个路径,通过该路径,从SSILRCKOSSIFSO引脚输入的信号用于生成发送数据,发送数据逻辑输出到SSITXD0或 SSIDATAO引脚。

Figure 2.47 SSIE data transmit and receive timing when SSICR.BCKP = 1

Figure 2.48 SSIE data output delay after SSILRCK0/SSIFS0 change

2.3.13 SD/MMC Host Interface Timing

SD/MMC Host Interface signal timing Table 2.32

Conditions: High drive output is selected in the Port Drive Capability bit in the PmnPFS register. Clock duty ratio is 50%.

Parameter	Symbol	Min	Max	Unit	Test conditions
SDCLK clock cycle	T _{SDCYC}	20	-	ns	Figure 2.49
SDCLK clock high pulse width	T _{SDWH}	6.5	-	ns	
SDCLK clock low pulse width	T _{SDWL}	6.5	-	ns	
SDCLK clock rise time	T _{SDLH}	_	3	ns	
SDCLK clock fall time	T _{SDHL}	_	3	ns	
SDCMD/SDDAT output data delay	T _{SDODLY}	-7	4	ns	
SDCMD/SDDAT input data setup	T _{SDIS}	4.5	-	ns	
SDCMD/SDDAT input data hold	T _{SDIH}	1.5	—	ns	

R01DS0368EJ0120 Rev.1.20 Dec 2, 2020

RENESAS

条件:在PmnPFS寄存器的端口驱动能力位中选择高驱动输出。 时钟占空比为50%。

Parameter	Symbol	Min	Max	Unit	测试条件
SDCLK 时钟周期	T _{SDCYC}	20	—	ns	Figure 2.49
SDCLK 时钟高脉冲宽度	T _{SDWH}	6.5	—	ns	
SDCLK 时钟低脉冲宽度	T _{SDWL}	6.5	—	ns	
SDCLK 时钟上升时间	T _{SDLH}	_	3	ns	
SDCLK 时钟下降时间	T _{SDHL}	_	3	ns	
SDCMDSDDAT输出数据延迟	T _{SDODLY}	-7	4	ns	
SDCMDSDDAT输入数据设置	T _{SDIS}	4.5	—	ns	
SDCMDSDDAT输入数据保持	T _{SDIH}	1.5	_	ns	

R01DS0368EJ0120 Rev.1.20 Dec 2, 2020

RENESAS

Note: Must use pins that have a letter appended to their name, for instance " A", " B", to indicate group membership. For the SD/MMC Host interface, the AC portion of the electrical characteristics is measured for each group.

Figure 2.49 SD/MMC Host Interface signal timing

2.4 **USB** Characteristics

2.4.1 **USBFS** Timing

USBFS low-speed characteristics for host only (USB_DP and USB_DM pin characteristics) Table 2.33

Conditions: VCC = AVCC0 = VCC USB = VBATT = 3.0 to 3.6V, 2.7 ≤ VREFH0/VREFH ≤ AVCC0, USBCLK = 48 MHz

Parameter		Symbol	Min	Тур	Max	Unit	Test conditions
Input	Input high voltage	V _{IH}	2.0	—	—	V	—
characteristics	Input low voltage	V _{IL}	-	-	0.8	V	—
	Differential input sensitivity	V _{DI}	0.2	-	-	V	USB_DP - USB_DM
	Differential common-mode range	V _{CM}	0.8	-	2.5	V	—
Output characteristics	Output high voltage	V _{OH}	2.8	-	3.6	V	I _{OH} = -200 μA
	Output low voltage	V _{OL}	0.0	-	0.3	V	I _{OL} = 2 mA
	Cross-over voltage	V _{CRS}	1.3	-	2.0	V	Figure 2.50
	Rise time	t _{LR}	75	-	300	ns	
	Fall time	t _{LF}	75	-	300	ns	
	Rise/fall time ratio	t _{LR} / t _{LF}	80	-	125	%	t _{LR} / t _{LF}
Pull-up and pull-down characteristics	USB_DP and USB_DM pull-down resistance in host controller mode	R _{pd}	14.25	-	24.80	kΩ	-

Figure 2.50 USB_DP and USB_DM output timing in low-speed mode

RA4M3 Datasheet

必须使用名称后附有字母的引脚,例如"_A"、"_B",以表示组成员身份。对于SDMMC 主机接口,对每组电气特性的交流部分进行测量。 Note:

2.4 USB特性

2.4.1 **USBFS** Timing

仅主机的USBFS低速特性(USB_DP和USB_DM引脚特性) Table 2.33

Conditions: VCC = AVCC0 = VCC_US	SB = VBATT = 3.0 to 3.6V, 2.7 ≤ V
----------------------------------	-----------------------------------

Parameter		Symbol	Min	Тур	Max	Unit	测试条件
输入特性	输入高压	VIH	2.0	-	—	V	—
	输入低电压	VIL	_	-	0.8	V	—
	差分输入灵敏度	V _{DI}	0.2	-	-	V	USB_DP - USB_DM
	差分共模范围	V _{CM}	0.8	-	2.5	V	—
输出特性	输出高压	V _{OH}	2.8	-	3.6	V	I _{OH} = -200 μA
	输出低电压	V _{OL}	0.0	-	0.3	V	我OL=2毫安
	Cross-over voltage	V _{CRS}	1.3	-	2.0	V	Figure 2.50
	上升时间	t _{LR}	75	-	300	ns	
	秋季时间	t _{LF}	75	-	300	ns	
	上升下降时间比	t _{LR} / t _{LF}	80	-	125	%	t _{LR} / t _{LF}
上拉和下拉特 性	主机控制器模式下的USB_DP和US B_DM下拉电阻	R _{pd}	14.25	-	24.80	kΩ	_

RENESAS

REFH0/VREFH ≤ AVCC0, USBCLK = 48 MHz

RA4M3 Datasheet

Figure 2.51 Test circuit in low-speed mode

USBFS full-speed characteristics (USB_DP and USB_DM pin characteristics) Table 2.34

Conditions: VCC = AVCC0 = VCC USB = VBATT = 3.0 to 3.6 V, 2.7 ≤ VREFH0/VREFH ≤ AVCC0, USBCLK = 48 MHz

Parameter		Symbol	Min	Тур	Max	Unit	Test conditions
Input	Input high voltage	VIH	2.0	-	_	V	-
characteristics	Input low voltage	VIL	-	—	0.8	V	-
	Differential input sensitivity	V _{DI}	0.2	—	—	V	USB_DP - USB_DM
	Differential common-mode range	V _{CM}	0.8	—	2.5	V	-
Output	Output high voltage	V _{OH}	2.8	—	3.6	V	I _{OH} = -200 μA
characteristics	Output low voltage	V _{OL}	0.0	—	0.3	V	I _{OL} = 2 mA
	Cross-over voltage	V _{CRS}	1.3	-	2.0	V	Figure 2.52
	Rise time	t _{LR}	4	-	20	ns	
	Fall time	t _{LF}	4	—	20	ns	
	Rise/fall time ratio	t _{LR} / t _{LF}	90	—	111.11	%	t _{FR} / t _{FF}
	Output resistance	Z _{DRV}	28	-	44	Ω	USBFS: Rs = 27 Ω included
Pull-up and	DM pull-up resistance in device controller	R _{pu}	0.900	_	1.575	kΩ	During idle state
pull-down characteristics	mode		1.425	-	3.090	kΩ	During transmission and reception
	USB_DP and USB_DM pull-down resistance in host controller mode	R _{pd}	14.25	-	24.80	kΩ	—

Figure 2.51 低速模式下的测试电路

USBFS全速特性(USB_DP和USB_DM引脚特性) Table 2.34

Parameter		Symbol	Min	Тур	Max	Unit	测试条件
输入特性	输入高压	VIH	2.0	-	-	V	—
	输入低电压	VIL	_	-	0.8	V	-
	差分输入灵敏度	V _{DI}	0.2	-	-	V	USB_DP - USB_DM
	差分共模范围	V _{CM}	0.8	-	2.5	V	-
输出特性	输出高压	V _{OH}	2.8	-	3.6	V	I _{OH} = -200 μA
	输出低电压	V _{OL}	0.0	-	0.3	V	我OL=2毫安
	Cross-over voltage	V _{CRS}	1.3	-	2.0	V	Figure 2.52
	上升时间	t _{LR}	4	-	20	ns	
	秋季时间	t _{LF}	4	-	20	ns	
	上升下降时间比	t _{LR} / t _{LF}	90	-	111.11	%	t _{FR} / t _{FF}
	输出电阻	Z _{DRV}	28	-	44	Ω	USBFS: Rs = 27 Ω included
上拉和下拉特	设备控制器模式下的DM上拉电阻	R _{pu}	0.900	—	1.575	kΩ	空闲状态期间
			1.425	-	3.090	kΩ	在发送和接收期间
	主机控制器模式下的USB_DP和US B_DM下拉电阻	R _{pd}	14.25	-	24.80	kΩ	-

RA4M3 Datasheet

Figure 2.53 Test circuit in full-speed mode

Table 2.35 USBFS characteristics (USB_DP and USB_DM pin characteristics)

Conditions: VCC = AVCC0 = VCC USB = VBATT = 3.0 to 3.6 V, 2.7 ≤ VREFH0/VREFH ≤ AVCC0, USBCLK = 48 MHz

Parameter		Symbol	Min	Тур	Max	Unit	Test conditions
Battery Charging Specification	D+ sink current	I _{DP_SINK}	25	-	175	μA	_
	D- sink current	I _{DM_SINK}	25	-	175	μA	_
	DCD source current	I _{DP_SRC}	7	-	13	μA	_
	Data detection voltage	V _{DAT_REF}	0.25	-	0.4	V	_
	D+ source voltage	V _{DP_SRC}	0.5	-	0.7	V	Outout current = 250 µA
	D- source voltage	V _{DM_SRC}	0.5	-	0.7	V	Outout current = 250 µA

2.5 ADC12 Characteristics

A/D conversion characteristics for unit 0 (1 of 2) Table 2.36

Parameter			Min	Тур	Max	Unit	Test conditions
Frequency			1	_	50	MHz	—
Analog input capacitance			_	_	30	pF	—
Quantization error			_	±0.5	—	LSB	—
Resolution			-	_	12	Bits	—
High-precision high-speed channels (AN000 to AN005) Conversion t 50 MHz)	Conversion time ^{*1} (operation at PCLKC = 50 MHz)	Permissible signal source impedance Max. = 1 kΩ	0.52 (0.26)*2	_	_	μs	Sampling in 13 states
		Max. = 400 Ω	0.40 (0.14)*2	_	_	μs	Sampling in 7 states VCC = AVCC0 = 3.0 to 3.6 V 3.0 V \leq VREFH0 \leq AVCC0
	Offset error		_	±1.0	±2.5	LSB	—
	Full-scale error		_	±1.0	±2.5	LSB	—
	Absolute accuracy	Absolute accuracy		±2.0	±4.5	LSB	—
DNL differential nonlinearity err		rity error	-	±0.5	±1.5	LSB	_
	INL integral nonlinearity	error		±1.0	±2.5	LSB	_

Figure 2.53 全速模式下的测试电路

USBFS特性(USB_DP和USB_DM引脚特性) Table 2.35

Parameter		Symbol	Min	Тур	Max	Unit	测试条件
电池充电 Craceification	D+灌电流	I _{DP_SINK}	25	-	175	μA	_
Specification -	D- sink current	I _{DM_SINK}	25	_	175	μA	_
	DCD源电流	I _{DP_SRC}	7	_	13	μA	_
	数据检测电压	V _{DAT_REF}	0.25	_	0.4	V	_
	D+源电压	V _{DP_SRC}	0.5	_	0.7	V	Outout current = 250 µA
	D- source voltage	V _{DM_SRC}	0.5	_	0.7	V	Outout current = 250 µA

2.5 ADC12 Characteristics

单元0(1of2)的AD转换特性 Table 2.36

Conditions: PCLKC = 1 to 50 M	ИНz						
Parameter			Min	Тур	最大!	单位	测试条件
Frequency			1	—	50	MHz	—
模拟输入电容			-	-	30	pF	—
量化误差			_	±0.5	—	LSB	—
Resolution			_	—	12	Bits	—
高精度高速通道(AN000 至AN005)	转换时间∗1 (operation at PCLKC = 50 MHz)	允许的信号源阻抗 Max.=1kΩ	0.52 (0.26)*2	-	-	μs	在13个州进行 抽样
		Max. = 400 Ω	0.40 (0.14)*2	_	_	μs	在7种状态下采样VC C=AVCCO=3.0至3.6 V3.0V≤VREFHO=AV CCO
	偏移误差		_	±1.0	±2.5	LSB	—
	Full-scale error		-	±1.0	±2.5	LSB	—
绝对精度			_	±2.0	±4.5	LSB	—
	DNL微分非线性误差		_	±0.5	±1.5	LSB	—
	INL积分非线性误差		_	±1.0	±2.5	LSB	—

Table 2.36 A/D conversion characteristics for unit 0 (2 of 2)

Conditions: PCLKC = 1 to 50 MHz

Parameter			Min	Тур	Мах	Unit	Test conditions
High-precision normal-speed channels (AN006 to AN009, AN012, AN013)	Conversion time ^{*1} (Operation at PCLKC = 50 MHz)	Permissible signal source impedance Max. = 1 kΩ	0.92 (0.66)*2	_		μs	Sampling in 33 states
	Offset error		—	±1.0	±2.5	LSB	—
	Full-scale error		—	±1.0	±2.5	LSB	—
	Absolute accuracy		—	±2.0	±4.5	LSB	—
	DNL differential nonlinearity error		—	±0.5	±1.5	LSB	—
	INL integral nonlinearity error		_	±1.0	±2.5	LSB	_

These specification values apply when there is no access to the external memory during A/D conversion. If access occurs during Note: A/D conversion, values might not fall within the indicated ranges.

The use of PORT0 as digital outputs is not allowed when the 12-Bit A/D converter is used.

The characteristics apply when AVCC0, AVSS0, VREFH0/VREFH, VREFL0, VREFL, and 12-bit A/D converter input voltage are stable.

Note: When both unit0 and unit1 are used, do not select the following analog input combinations at the same time except the interleave function. If selected, values might not fall within the indicated ranges.

AN100 and AN000 or AN001 or AN002

- AN101 and AN000 or AN001 or AN002 or AN003
- AN102 and AN000 or AN001 or AN002 or AN003 or AN004

Note 1. The conversion time includes the sampling and comparison times. The number of sampling states is indicated for the test

conditions. Note 2. Values in parentheses indicate the sampling time.

Table 2.37 A/D conversion characteristics for unit 1

Conditions: PCLKC = 1 to 50 MHz

Parameter		Min	Тур	Max	Unit	Test conditions		
Frequency			1	-	50	MHz	—	
Analog input capacitance			_	—	30	pF	—	
Quantization error			_	±0.5	_	LSB	—	
Resolution			_	-	12	Bits	—	2
High-precision high-speed channels (AN100 to AN102)	Conversion time ^{*1} (Operation at PCLKC = 50 MHz)	Permissible signal source impedance Max. = 1 kΩ	0.52 (0.26) ^{*2}	—	—	μs	Sampling in 13 states	
		Max. = 400 Ω	0.40 (0.14)*2	_	_	μs	Sampling in 7 states VCC = AVCC0 = 3.0 to 3.6 V $3.0 V \le VREFH \le$ AVCC0	
	Offset error		_	±1.0	±2.5	LSB	_	
	Full-scale error		_	±1.0	±2.5	LSB	—	
	Absolute accuracy		_	±2.0	±4.5	LSB	—	
	DNL differential nonlinea	rity error	_	±0.5	±1.5	LSB	—	
	INL integral nonlinearity	error	_	±1.0	±2.5	LSB	—	
Normal-precision normal- speed channels (AN116 to AN122)	Conversion time ^{*1} (Operation at PCLKC = 50 MHz)	Permissible signal source impedance Max. = 1 kΩ	0.92 (0.66)*2	-	-	μs	Sampling in 33 states	
	Offset error	Offset error		±1.0	±5.5	LSB	_	
	Full-scale error	Full-scale error		±1.0	±5.5	LSB	—	
	Absolute accuracy	Absolute accuracy		±2.0	±7.5	LSB	—	
	DNL differential nonlinea	rity error	_	±0.5	±4.5	LSB	-	
	INL integral nonlinearity	error	_	±1.0	±5.5	LSB	-	

RA4M3 Datasheet

Table 2.36 单元0(2of2)的AD转换特性

Conditions: PCLKC = 1 to 50 MHz

Parameter			Min	Тур	最大學	单位	测试条件
高精度常速通道(AN006至A N009、AN012、AN013)	转换时间*1 (Operation at PCLKC = 50 MHz)	允许的信号源阻抗 Max.=1kΩ	0.92 (0.66) ^{*2}	_	_	μs	在33个州进行 抽样
	偏移误差		—	±1.0	±2.5	LSB	—
	Full-scale error		—	±1.0	±2.5	LSB	—
	绝对精度		—	±2.0	±4.5	LSB	—
	DNL微分非线性误差		—	±0.5	±1.5	LSB	—
	INL积分非线性误差		—	±1.0	±2.5	LSB	—

这些规格值适用于在AD转换期间无法访问外部存储器的情况。如果访问发生在 Note: D转换,值可能不在指定范围内。 使用12位AD转换器时,不允许将PORTO用作数字输出。 这些特性适用于AVCC0、AVSS0、VREFH0、VREFH、VREFL0、VREFL和12位AD转换器输入电压稳定时。

当同时使用unit0和unit1时,除了交错功能外,不要同时选择以下模拟输入组合。如果选中,值可能不在指定范围内。● Note:

AN100和AN000或AN001或AN002

- AN101和AN000或AN001或AN002或AN003
- AN102和AN000或AN001或AN002或AN003或AN004

注1.转换时间包括采样时间和比较时间。针对测试条件指示采样状态的数量。

注2: 括号内的数值表示采样时间。

Table 2.37 单元1的AD转换特性

Conditions: PCLKC = 1 to 50	MHz						
Parameter							
Frequency							
模拟输入电容							
量化误差							
Resolution							
高精度高速通道(AN100 至AN102)	转换时间*1 (Operation at PCLKC = 50 MHz)	允许的信号》 Max.=1kΩ					
		Max. = 400					
	偏移误差	偏移误差					
	Full-scale error						
	绝对精度	绝对精度					
	DNL微分非线性误差						
	INL积分非线性误差						
正常精度正常速度通道(AN116至AN122)	转换时间*1 (Operation at PCLKC = 50 MHz)	允许的信号》 Max.=1kΩ					
	偏移误差	1					
	Full-scale error						
	绝对精度	绝对精度					
	DNL微分非线性误差	DNL微分非线性误差					
	INL积分非线性误差	INL积分非线性误差					

	Min	Тур	最大學	单位	测试条件
	1	_	50	MHz	-
	_	—	30	pF	_
	_	±0.5	_	LSB	—
	_	—	12	Bits	_
原阻抗	0.52 (0.26) ^{*2}	_	_	μs	在13个州进行 抽样
Ω	0.40 (0.14) ^{*2}			μs	在7种状态下采样VC C=AVCC0=3.0至3.6 V3.0V≤VREFH≤AVC C0
	_	±1.0	±2.5	LSB	_
	_	±1.0	±2.5	LSB	_
	_	±2.0	±4.5	LSB	—
	_	±0.5	±1.5	LSB	—
	_	±1.0	±2.5	LSB	—
原阻抗	0.92 (0.66) ^{*2}	_	_	μs	在33个州进行 抽样
	_	±1.0	±5.5	LSB	_
	_	±1.0	±5.5	LSB	_
	_	±2.0	±7.5	LSB	_
	_	±0.5	±4.5	LSB	_
	_	±1.0	±5.5	LSB	_

2. Electrical Characteristics

- Note: These specification values apply when there is no access to the external memory during A/D conversion. If access occurs during A/D conversion, values might not fall within the indicated ranges.
 - The use of PORT0 as digital outputs is not allowed when the 12-Bit A/D converter is used.

The characteristics apply when AVCC0, AVSS0, VREFH0/VREFH, VREFL0, VREFL, and 12-bit A/D converter input voltage are stable

Note: When both unit0 and unit1 are used, do not select the following analog input combinations at the same time except the interleave function. If selected, values might not fall within the indicated ranges.

- AN100 and AN000 or AN001 or AN002
- AN101 and AN000 or AN001 or AN002 or AN003
- AN102 and AN000 or AN001 or AN002 or AN003 or AN004

Note 1. The conversion time includes the sampling and comparison times. The number of sampling states is indicated for the test conditions.

Note 2. Values in parentheses indicate the sampling time.

Table 2.38 A/D conversion characteristics for interleaving

Conditions: PCLKC = 1 to 50 MHz

Parameter		Min	Тур	Max	Unit	Test conditions	
Frequency			1	-	50	MHz	—
Analog input capacitance		-	-	30	pF	_	
Quantization error			—	±0.5	_	LSB	—
Resolution		_	-	12	Bits	_	
High-precision high-speed channels (AN000 & AN100, AN001 & AN101, AN002 & AN102))	$ \begin{array}{ c c c } Conversion time^{*1} & Max. = 400 \ \Omega \\ (operation at PCLKC = 50 \\ MHz) & \end{array} $		0.22	_		μs	Sampling in 9 states VCC = AVCC0 = 3.0 to 3.6 V 3.0 V \leq VREFH0 \leq AVCC0
	Offset error		—	±1.0	±2.5	LSB	—
	Full-scale error		—	±1.0	±2.5	LSB	—
	Absolute accuracy		_	±2.0	±4.5	LSB	_
	DNL differential nonlinearity error			±0.5	±3.5	LSB	-
	INL integral nonlinearity err	ror	_	±1.0	±3.5	LSB	_

Note: These specification values apply when there is no access to the external memory during A/D conversion. If access occurs during A/D conversion, values might not fall within the indicated ranges.

The use of PORT0 as digital outputs is not allowed when the 12-Bit A/D converter is used.

The characteristics apply when AVCC0, AVSS0, VREFH0/VREFH, VREFL0, VREFL, and 12-bit A/D converter input voltage are stable.

Note 1. The conversion time includes the sampling and comparison times. The number of sampling states is indicated for the test conditions.

Table 2.39 A/D internal reference voltage characteristics

Parameter		Min	Тур	Мах	Unit	Test conditions
A/D internal reference voltage		1.13	1.18	1.23	V	—
	Sampling time	4.15	_	_	μs	_

RA4M3 Datasheet

- 这些规格值适用于在AD转换期间无法访问外部存储器的情况。如果访问发生在 Note: D转换,值可能不在指定范围内。 使用12位AD转换器时,不允许将PORTO用作数字输出。 这些特性适用于AVCC0、AVSS0、VREFH0、VREFH、VREFL0、VREFL和12位AD转换器输入电压稳定时。
- Note: 当同时使用unit0和unit1时,除了交错功能外,不要同时选择以下模拟输入组合。如果选中,值可能不在指定范围内。●
 - AN100和AN000或AN001或AN002
 - AN101和AN000或AN001或AN002或AN003
 - AN102和AN000或AN001或AN002或AN003或AN004
- 注1.转换时间包括采样时间和比较时间。针对测试条件指示采样状态的数量。

注2: 括号内的数值表示采样时间。

用于交织的AD转换特性 Table 2.38

Conditions: PCLKC = 1 to 50 MHz							
Parameter			Min	Тур	最大	单位	测试条件
Frequency			1	—	50	MHz	—
模拟输入电容		—	_	30	pF	—	
量化误差	—	±0.5	—	LSB	—		
Resolution					12	Bits	—
High-precision high-speed channels (AN000 & AN100, AN001 & AN101, AN002 & AN102))	转换时间*1 (operation at PCLKC = 50 MHz)	Max. = 400 Ω	0.22			μs	在9个州进行抽样 VCC = AVCC0 = 3.0 to 3.6 V 3.0 V ≤ VREFH0 ≤ AVCC0
	偏移误差		—	±1.0	±2.5	LSB	_
	Full-scale error		—	±1.0	±2.5	LSB	_
	绝对精度		—	±2.0	±4.5	LSB	_
	DNL微分非线性误差		—	±0.5	±3.5	LSB	_
	INL积分非线性误差		_	±1.0	±3.5	LSB	

这些规格值适用于在AD转换期间无法访问外部存储器的情况。如果访问发生在 Note: D转换,值可能不在指定范围内。 使用12位AD转换器时,不允许将PORTO用作数字输出。 这些特性适用于AVCC0、AVSS0、VREFH0、VREFH、VREFL0、VREFL和12位AD转换器输入电压稳定时。

注1.转换时间包括采样时间和比较时间。针对测试条件指示采样状态的数量。

AD内部参考电压特性 Table 2.39

Parameter	Min	Тур	Max	Unit	测试条件	
AD内部参考电压	1.13	1.18	1.23	V	-	
采样时间	4.15	_	_	μs	_	

Illustration of ADC12 characteristic terms Figure 2.54

Absolute accuracy

Absolute accuracy is the difference between output code based on the theoretical A/D conversion characteristics, and the actual A/D conversion result. When measuring absolute accuracy, the voltage at the midpoint of the width of the analog input voltage (1-LSB width), which can meet the expectation of outputting an equal code based on the theoretical A/D conversion characteristics, is used as an analog input voltage. For example, if 12-bit resolution is used and the reference voltage VREFH0 = 3.072 V, then the 1-LSB width becomes 0.75 mV, and 0 mV, 0.75 mV, and 1.5 mV are used as the analog input voltages. If the analog input voltage is 6 mV, an absolute accuracy of ±5 LSB means that the actual A/D conversion result is in the range of 0x003 to 0x00D, though an output code of 0x008 can be expected from the theoretical A/D conversion characteristics.

Integral nonlinearity error (INL)

Integral nonlinearity error is the maximum deviation between the ideal line when the measured offset and full-scale errors are zeroed, and the actual output code.

Differential nonlinearity error (DNL)

Differential nonlinearity error is the difference between the 1-LSB width based on the ideal A/D conversion characteristics and the width of the actual output code.

绝对精度

绝对精度是基于理论AD转换特性的输出代码与实际AD转换结果之间的差异。测量绝对精度时,将模拟输入电 压宽度(1–LSB宽度)的中点电压作为模拟输入电压,该电压可以满足基于理论模数转换特性输出等码的预期. 例如,如果使用12位分辨率且参考电压VREFH0=3.072V,则1-LSB宽度变为0.75mV,并且使用0mV、0.75mV 和1.5mV作为模拟输入电压。如果模拟输入电压为6mV,±5LSB的绝对精度意味着实际的AD转换结果在0x003 到0x00D的范围内,尽管从理论上的AD转换特性可以预期输出代码为0x008。

积分非线性误差(INL)

积分非线性误差是测量的偏移和满量程误差为零时的理想线与实际输出代码之间的最大偏差。

微分非线性误差(DNL)

微分非线性误差是基于理想AD转换特性的1-LSB宽度与实际输出码的宽度之差。

Offset error

Offset error is the difference between the transition point of the ideal first output code and the actual first output code.

Full-scale error

Full-scale error is the difference between the transition point of the ideal last output code and the actual last output code.

2.6 **DAC12** Characteristics

Table 2.40 D/A conversion characteristics

Parameter	Min Typ Max Unit Test conditions					
Resolution	_	_	12	Bits	_	7
Without output amplifier	L. C.		L.	•		
Absolute accuracy	_	—	±24	LSB	Resistive load 2 MΩ	
INL	_	±2.0	±8.0	LSB	Resistive load 2 MΩ	
DNL	_	±1.0	±2.0	LSB	-	
Output impedance	_	8.5	_	kΩ	_	
Conversion time	_	_	3	μs	Resistive load 2 M Ω , Capacitive load 20 pF	
Output voltage range	0	_	VREFH	V	—	
With output amplifier	L. L	-		-		
INL	_	±2.0	±4.0	LSB	_	
DNL	_	±1.0	±2.0	LSB	—	
Conversion time	_	_	4.0	μs	—	
Resistive load	5	—	_	kΩ	—	
Capacitive load	_	_	50	pF	—	
Output voltage range	0.2	_	VREFH – 0.2	V	_	15

2.7 **TSN** Characteristics

Table 2.41 TSN characteristics

Parameter	Symbol	Min	Тур	Max	Unit	Test conditions
Relative accuracy	-	-	± 1.0	_	°C	-
Temperature slope	—	-	4.0	—	mV/°C	—
Output voltage (at 25 °C)	—	-	1.24	—	V	—
Temperature sensor start time	t _{START}	-	_	30	μs	_
Sampling time	-	4.15	_	_	μs	_

2.8 **OSC Stop Detect Characteristics**

Table 2.42 Oscillation stop detection circuit characteristics

Parameter	Symbol	Min	Тур	Max	Unit	Test conditions
Detection time	t _{dr}	—	_	1	ms	Figure 2.55

偏移误差

偏移误差是理想的第一个输出代码的转换点与实际的第一个输出代码之间的差异。

Full-scale error

满量程误差是理想的最后输出代码的转换点与实际的最后输出代码之间的差异。

2.6 **DAC12** Characteristics

Table 2.40 DA转换特性

Parameter	Min	Тур	Мах	Unit	测试条件
Resolution	_	_	12	Bits	—
无输出放大器					
绝对精度	—	_	±24	LSB	阻性负载2MΩ
INL	—	±2.0	±8.0	LSB	阻性负载2MΩ
DNL	_	±1.0	±2.0	LSB	_
输出阻抗	—	8.5	—	kΩ	_
转换时间	_	_	3	μs	电阻负载2MΩ,电容负载20pF
输出电压范围	0	_	VREFH	V	—
带输出放大器			•		
INL	—	±2.0	±4.0	LSB	_
DNL	—	±1.0	±2.0	LSB	—
转换时间	—	_	4.0	μs	—
阻性负载	5	_	—	kΩ	_
Capacitive load	_	_	50	pF	_
输出电压范围	0.2	_	VREFH – 0.2	V	—

2.7 **TSN** Characteristics

Table 2.41 TSN characteristics

Parameter	Symbol	Min	Тур	Мах	Unit	测试条件	
相对精度	_	_	± 1.0	_	°C	—	
温度斜率	_	_	4.0	_	mV/°C	—	
输出电压(25℃时)	_	_	1.24	_	V	—	
温度传感器启动时间	t _{START}	_	_	30	μs	_	
采样时间	_	4.15	_	_	μs	_	

2.8 OSC停止检测特性

Table 2.42 振荡停止检测电路特性

Parameter	Symbol	Min	Тур	Max	Unit	测试条件
检测时间	t _{dr}	—	-	1	ms	Figure 2.55

RA4M3 Datasheet

Figure 2.55 Oscillation stop detection timing

2.9 POR and LVD Characteristics

Table 2.43 Power-on reset circuit and voltage detection circuit characteristics (1)

Parameter			Symbol	Min	Тур	Max	Un it	Test conditions
Voltage detection level	Power-on reset (POR)	DPSBYCR.DEEPCUT[1:0] = 00b or 01b.	V _{POR}	2.5	2.6	2.7	V	Figure 2.56
		DPSBYCR.DEEPCUT[1:0] = 11b.		1.8	2.25	2.7	1	
	Voltage detection c	Itage detection circuit (LVD0)			2.94	3.04	1	Figure 2.57
		V _{det0_2}	2.77	2.87	2.97	1		
		V _{det0_3}	2.70	2.80	2.90	1		
	Voltage detection circuit (LVD1)			2.89	2.99	3.09	1	Figure 2.58
		V _{det1_2}	2.82	2.92	3.02	1		
						2.95		
	Voltage detection c	Voltage detection circuit (LVD2)				3.09	1	Figure 2.59
				2.82	2.92	3.02]	
			V _{det2_3}	2.75	2.85	2.95	1	
Internal reset time	Power-on reset time			—	4.5	-	ms	Figure 2.56
	LVD0 reset time	LVD0 reset time				-]	Figure 2.57
	LVD1 reset time		t _{LVD1}	—	0.38	-]	Figure 2.58
	LVD2 reset time	LVD2 reset time				-]	Figure 2.59
Minimum VCC dow	n time ^{*1}		t _{VOFF}	200	—	_	μs	Figure 2.56, Figure 2.57
Response delay				-	_	200	μs	Figure 2.57 to Figure 2.59
LVD operation stab	LVD operation stabilization time (after LVD is enabled)			—	—	10	μs	Figure 2.58,
Hysteresis width (L	Hysteresis width (LVD1 and LVD2)			-	70	-	m V	

Note 1. The minimum VCC down time indicates the time when VCC is below the minimum value of voltage detection levels VPOR, Vdet0, $V_{det1},$ and V_{det2} for POR and LVD.

	主时	钟	ηπη				
	_						
	OSTDSR.C	DSTDF					
	MOCO	O clock					
			חחחר				
		ICLK					
Figure 2.55	振荡停止检测时机						
2.9 POR	和LVD特性						
Table 2.43	上电复位电路及电压	检测电	路特性(一)				
电压检测电半	Power-on reset (POR)	-on reset DPSBYCR.DEEPCUT[01b.					
		DPSB	YCR.DEEPCUT[1:0] = 11				
	电压检测电路(LVI	D0)					
	电压检测电路(LVI	D1)					
	电压检测电路(LV	D2)					
内部复位时间	上电复位时间						
	LVD0复位时间						
	LVD1复位时间						
	LVD2复位时间						
最小VCC停机时间]*1						
响应延迟							
	」(后用LVD后)						
」応滞苋度(LVD1:	πulvD2)						
注1 是小小个位切		检测电热					

注1.最小VCC停机时间是指VCC低于电压检测电平VPOR、Vdet0、 Vdet1和Vdet2用于POR和LVD。

	Symbol	Min	Тур	Max	单 元	测试条件
0b or	V _{POR}	2.5	2.6	2.7	V	Figure 2.56
1b.		1.8	2.25	2.7		
	V _{det0_1}	2.84	2.94	3.04		Figure 2.57
	V _{det0_2}	2.77	2.87	2.97		
	V _{det0_3}	2.70	2.80	2.90		
	V _{det1_1}	2.89	2.99	3.09		Figure 2.58
	V _{det1_2}	2.82	2.92	3.02		
	V _{det1_3}	2.75	2.85	2.95		
	V _{det2_1}	2.89	2.99	3.09		Figure 2.59
	V _{det2_2}	2.82	2.92	3.02		
	V _{det2_3}	2.75	2.85	2.95		
	t _{POR}	—	4.5	_	ms	Figure 2.56
	t _{LVD0}	—	0.51	_		Figure 2.57
	t _{LVD1}	—	0.38	_		Figure 2.58
	t _{LVD2}	—	0.38	_		Figure 2.59
	t _{VOFF}	200	—		μs	Figure 2.56, Figure 2.57
	t _{det}	_	_	200	μs	图2.57至 Figure 2.59
	t _{d(E-A)}	—	—	10	μs	Figure 2.58,
	V _{LVH}	—	70	—	m V	rigule 2.59

RA4M3 Datasheet

Voltage detection circuit timing (V_{det2}) Figure 2.59

2.10 **VBATT** Characteristics

Battery backup function characteristics Table 2.44

Conditions: VCC = AVCC0 = VCC USB = 2.7 to 3.6 V, 2.7 ≤ VREFH0/VREFH ≤ AVCC0, VBATT = 1.8 to 3.6 V

Parameter	Symbol	Min	Тур	Max	Unit	Test conditions
Voltage level for switching to battery backup	V _{DETBATT}	2.50	2.60	2.70	V	Figure 2.60
Lower-limit VBATT voltage for power supply switching caused by VCC voltage drop	VBATTSW	2.70	_	_	V	
VCC-off period for starting power supply switching	t _{VOFFBATT}	200	_	_	μs	
VBATT low voltage detection level	V _{battldet}	1.8	1.9	2.0	V	Figure 2.61
Minimum VBATT down time	t _{BATTOFF}	200	-	-	μs	
Response delay	t _{BATTdet}	_	-	200	μs	
VBATT monitor operation stabilization time (after VBATTMNSELR.VBATTMNSEL is changed to 1)	t _{d(E-A)}	_	_	20	μs	
VBATT current increase (when VBATTMNSELR.VBATTMNSEL is 1 compared to the case that VBATTMNSELR.VBATTMNSEL is 0)	IVBATTSEL	_	140	350	nA	

The VCC-off period for starting power supply switching indicates the period in which VCC is below the minimum value of the voltage Note: level for switching to battery backup (V_{DETBATT}).

Figure 2.59 _ 电压检测电路时序(Vdet2)

2.10 **VBATT Characteristics**

电池备份功能特点 Table 2.44

Conditions: VCC = AVCC0 = VCC USB = 2.7 to 3.6 V. 2.7 ≤ VREFH0/VREFH ≤ AVCC0. VBATT = 1.8 to 3.6 V

Parameter	Symbol	Min	Тур	Max	Unit	测试条件
切换到备用电池的电压电平	V _{DETBATT}	2.50	2.60	2.70	V	Figure 2.60
VCC压降引起的电源切换下限VBATT电压	V _{BATTSW}	2.70	_	_	V	
启动电源切换的VCC-off周期	t _{VOFFBATT}	200	_	_	μs	
VBATT低电压检测电平	V _{battldet}	1.8	1.9	2.0	V	Figure 2.61
最短VBATT停机时间	t _{BATTOFF}	200	_	_	μs	
响应延迟	t _{BATTdet}	_	_	200	μs	
VBATT监视器运行稳定时间(VBATTMNSE LR.VBATTMNSEL变为1后)	t _{d(E-A)}	_	_	20	μs	
VBATT电流增加(当 与VBATTMNSELR.VBATTMNSEL为0的情况相比 ,VBATTMNSELR.VBATTMNSEL为1)	IVBATTSEL	_	140	350	nA	

Note: 开始电源切换的VCC-off周期表示VCC低于切换到备用电池的电压电平最小值(VDETBATT)的周期。

2. Electrical Characteristics

RA4M3 Datasheet

Battery backup function characteristics Figure 2.61

2.11 **CTSU** Characteristics

Table 2.45 **CTSU** characteristics

Parameter	Symbol	Min	Тур	Max	Unit	Test conditions
External capacitance connected to TSCAP pin	C _{tscap}	9	10	11	nF	_
TS pin capacitive load	C _{base}	—	_	50	pF	_
Permissible output high current	ΣιοΗ	_	—	-40	mA	When the mutual capacitance method is applied

2.12 Flash Memory Characteristics

2.12.1 **Code Flash Memory Characteristics**

Code flash memory characteristics (1 of 2) Table 2.46 Conditions: Program or erase: FCLK = 4 to 50 MHz Read: FCLK ≤ 50 MHz

Parameter			FCLK = 4 MHz			20 MHz ≤	FCLK ≤ {		Test	
		Symbol	Min	Typ*6	Max	Min	Typ ^{*6}	Мах	Unit	conditions
Programming time N _{PEC} ≤ 100 times	128-byte	t _{P128}	_	0.75	13.2	—	0.34	6.0	ms	
	8-KB	t _{P8K}	_	49	176	—	22	80	ms	
	32-KB	t _{P32K}	_	194	704	_	88	320	ms	

RENESAS

Figure 2.61 电池备份功能特点

2.11 **CTSU** Characteristics

Table 2.45 **CTSU** characteristics

Parameter	Symbol	Min	Тур	Max	Unit	测试条件
连接到TSCAP引脚的外部电容	C _{tscap}	9	10	11	nF	_
TS引脚容性负载	C _{base}	—	_	50	pF	_
允许输出大电流	ΣιοΗ	_	_	-40	mA	应用互电容法时

闪存特性 2.12

代码闪存特性 2.12.1

Table 2.46 代码闪存特性(1of2)

条件:编程或擦除:FCLK=4至50MHz Read: FCLK ≤ 50 MHz

			FCLK = 4 MHz			20 MHz ≤	FCLK ≤ {		测试条件	
Parameter		Symbol	Min	Typ ^{*6}	Max	Min	Typ ^{*6}	Мах	Unit	
编程时间NPEC≤10 0次	128-byte	t _{P128}	—	0.75	13.2	—	0.34	6.0	ms	
	8-KB	t _{P8K}	_	49	176	_	22	80	ms	
	32-KB	t _{P32K}	_	194	704	—	88	320	ms	

R01DS0368EJ0120 Rev.1.20 Dec 2, 2020

RENESAS

Table 2.46 Code flash memory characteristics (2 of 2)

Conditions: Program or erase: FCLK = 4 to 50 MHz

Read: FCLK ≤ 50 MHz

			FCLK =	4 MHz		20 MHz ≤	FCLK ≤	50 MHz		Teet
Parameter		Symbol	Min	Typ ^{*6}	Max	Min	Typ*6	Max	Unit	conditions
Programming time	128-byte	t _{P128}	_	0.91	15.8	—	0.41	7.2	ms	
$N_{\text{PEC}} > 100 \text{ times}$	8-KB	t _{P8K}	_	60	212	—	27	96	ms	
-	32-KB	t _{P32K}	_	234	848	—	106	384	ms	
Erasure time	8-KB	t _{E8K}	_	78	216	—	43	120	ms	
$N_{PEC} \le 100 \text{ times}$	32-KB	t _{E32K}	_	283	864	—	157	480	ms	
Erasure time	8-KB	t _{E8K}	_	94	260	—	52	144	ms	
N _{PEC} > 100 times	32-KB	t _{E32K}	_	341	1040	—	189	576	ms	
Reprogramming/erasure cycle ^{*4}		N _{PEC}	10000*1	—	—	10000*1	-	_	Times	
Suspend delay during programming	g	t _{SPD}	_	—	264	—	-	120	μs	
Programming resume time		t _{PRT}	_	—	110	—	-	50	μs	
First suspend delay during erasure priority mode	in suspend	t _{SESD1}	_	-	216	_	-	120	μs	
Second suspend delay during eras priority mode	ure in suspend	t _{SESD2}	_	_	1.7	_	-	1.7	ms	
Suspend delay during erasure in er mode	rasure priority	t _{SEED}	_	-	1.7	_	-	1.7	ms	
First erasing resume time during erasure in suspend priority mode ^{*5}		t _{REST1}	_	-	1.7	_	-	1.7	ms	
Second erasing resume time during erasure in suspend priority mode		t _{REST2}	-	-	144	-	-	80	μs	
Erasing resume time during erasure priority mode	e in erasure	t _{REET}	_	-	144	—	-	80	μs	
Forced stop command		t _{FD}	-	—	32	—	-	20	μs	
Data hold time ^{*2}		t _{DRP}	10*2 *3	_	_	10*2 *3	-	_	Years	

Note 1. This is the minimum number of times to guarantee all the characteristics after reprogramming. The guaranteed range is from 1 to the minimum value.

Note 2. This indicates the minimum value of the characteristic when reprogramming is performed within the specified range.

Note 3. This result is obtained from reliability testing.

Note 4. The reprogram/erase cycle is the number of erasures for each block. When the reprogram/erase cycle is n times (n = 10,000), erasing can be performed n times for each block. For example, when 128-byte programming is performed 64 times for different addresses in 8-KB blocks, and then the entire block is erased, the reprogram/erase cycle is counted as one. However, programming the same address several times as one erasure is not enabled. Overwriting is prohibited.

Note 5. Time for resumption includes time for reapplying the erasing pulse (up to one full pulse) that was cut off at the time of suspension.

Note 6. The reference value at VCC = 3.3V and room temperature.

Table 2.46 代码闪存特性(2of2)

RA4M3 Datasheet

条件:编程或擦除:FCLK=4至50MHz Re

ead:	FCLK ≤ 50 MHz	
	AULT WINTY CER	172001

			FCLK =	4 MHz		20 MHz ≤	FCLK ≤	50 MHz		测试冬件
Parameter		Symbol	Min	Typ ^{*6}	Max	Min	Typ ^{*6}	Мах	Unit	17.7 144 27.7 11
编程时间NPEC>10	128-byte	t _{P128}	_	0.91	15.8	—	0.41	7.2	ms	
	8-КВ	t _{P8K}	_	60	212	_	27	96	ms	
	32-KB	t _{P32K}	_	234	848	_	106	384	ms	
擦除时间	8-КВ	t _{E8K}	_	78	216	_	43	120	ms	
NPEC=100%	32-KB	t _{E32K}	—	283	864	_	157	480	ms	
擦除时间	8-КВ	t _{E8K}	_	94	260	_	52	144	ms	
NPEC>1007	32-KB	t _{E32K}	_	341	1040	_	189	576	ms	
Reprogramming/erasure cycle*4	•	N _{PEC}	10000*1	—	—	10000 ^{*1}	_	—	Times	
编程期间暂停延迟		t _{SPD}	_	—	264	_	_	120	μs	
编程恢复时间		t _{PRT}	_	—	110	_	_	50	μs	
挂起优先模式下擦除期间的第一个	挂起延迟	t _{SESD1}	-	_	216	_	_	120	μs	
挂起优先模式下擦除期间的第二挂	起延迟	t _{SESD2}	_	—	1.7	_	_	1.7	ms	
擦除优先模式下擦除期间的挂起延	迟	t _{SEED}	-	_	1.7	_	_	1.7	ms	
挂起优先模式擦除期间的第一次擦	除恢复时间*5	t _{REST1}	_	_	1.7	_	_	1.7	ms	
挂起优先模式下擦除期间的第二次擦除恢复时 间		t _{REST2}	_	_	144	_	_	80	μs	
在擦除优先模式下擦除期间擦除恢复时间		t _{REET}	_	_	144	_	_	80	μs	
强制停止命令		t _{FD}	_	—	32	_	_	20	μs	
数据保持时间*2		t _{DRP}	10*2 *3	_	_	10 ^{*2 *3}	_	_	Years	

注1.这是重新编程后保证所有特性的最少次数。保证范围是从1到最小值。

注2.这表示在指定范围内执行重新编程时特性的最小值。

注3:此结果来自可靠性测试。

注4.重新编程擦除周期是每个块的擦除次数。当重新编程擦除周期为n次(n=10 000)时,可以对每个块执行n次擦除。例如,当对8KB块中的不同地址执行64次128字节编程,然后擦除整个块时,重新编程擦除周期计为1。但是,不能将同一地址多次编程为一次擦除。禁止覆盖。

注5.恢复时间包括重新应用暂停时切断的擦除脉冲(最多1个完整脉冲)的时间。 注6.VCC=3.3V和室温下的参考值。

2. Electrical Characteristics

RA4M3 Datasheet

2.12.2 Data Flash Memory Characteristics

Table 2.47 Data flash memory characteristics (1 of 2)

Conditions: Program or erase: FCLK = 4 to 50 MHz Read: FCLK \leq 50 MHz

			FCLK = 4	FCLK = 4 MHz			CLK ≤ 5	0 MHz		Tost
Parameter	Parameter		Min	Typ*6	Max	Min	Typ ^{*6}	Max	Unit	conditions
Programming time	4-byte	t _{DP4}	—	0.36	3.8	—	0.16	1.7	ms	
	8-byte	t _{DP8}	_	0.38	4.0	—	0.17	1.8		
	16-byte	t _{DP16}	—	0.42	4.5	—	0.19	2.0		
Erasure time	64-byte	t _{DE64}	—	3.1	18	—	1.7	10	ms	
	128-byte	t _{DE128}	—	4.7	27	—	2.6	15		
	256-byte	t _{DE256}	—	8.9	50	—	4.9	28		
Blank check time	4-byte	t _{DBC4}	—	—	84	—	—	30	μs	
Reprogramming/erasure cycle ^{*1}		N _{DPEC}	125000 ^{*2}	—	-	125000 ^{*2}	—	—	_	
Suspend delay during programming	4-byte	t _{DSPD}	_	—	264	—	_	120	μs	
	8-byte		_	_	264	—	_	120		
	16-byte		_	—	264	_	—	120		
Programming resume time		t _{DPRT}	—	—	110	—	—	50	μs	
First suspend delay during erasure in	64-byte	t _{DSESD1}	—	—	216	—	—	120	μs	
suspend priority mode	128-byte		_	—	216	_	—	120		
	256-byte		_	_	216	_	_	120		

R01DS0368EJ0120 Rev.1.20 Dec 2, 2020

Figure 2.62 闪存编程和擦除的暂停和强制停止时序

2.12.2 数据闪存特性

Table 2.47 数据闪存特性(1of2)

条件:编程或擦除:FCLK=4至50MHz Read:FCLK≤50 MHz

			FCLK = 4	MHz		20 MHz ≤ F	CLK ≤ 5	0 MHz		测试冬性
Parameter		Symbol	Min	典型*6 量	, 最大值最- 」	, 小值 」	Typ ^{*6}	Max	Unit	〃リ艸
编程时间	4-byte	t _{DP4}	-	0.36	3.8	-	0.16	1.7	ms	
	8-byte	t _{DP8}	—	0.38	4.0	—	0.17	1.8		
	16-byte	t _{DP16}	—	0.42	4.5	—	0.19	2.0		
擦除时间	64-byte	t _{DE64}	—	3.1	18	—	1.7	10	ms	
	128-byte	t _{DE128}	—	4.7	27	—	2.6	15		
	256-byte	t _{DE256}	—	8.9	50	_	4.9	28		
空白检查时间	4-byte	t _{DBC4}	—	—	84	_	_	30	μs	
Reprogramming/erasure cycle ^{*1}		N _{DPEC}	125000 ^{*2}	—	-	125000 ^{*2}	_	—	_	
编程期间暂停延迟	4-byte	t _{DSPD}	—	—	264	_	—	120	μs	
	8-byte		—	—	264	_	—	120		
	16-byte		—	—	264	_	—	120		
编程恢复时间		t _{DPRT}	—	—	110	_	—	50	μs	
挂起优先模式下擦除期间的第一个挂 起延迟	64-byte	t _{DSESD1}	—	—	216	—	—	120	μs	
	128-byte		_	_	216	—	_	120		
	256-byte		-	_	216	_	_	120		

R01DS0368EJ0120 Rev.1.20 Dec 2, 2020

Table 2.47 Data flash memory characteristics (2 of 2)

Conditions: Program or erase: FCLK = 4 to 50 MHz

Read: FCLK ≤ 50 MHz

			FCLK = 4	MHz		20 MHz ≤ F	CLK ≤ €	50 MHz		Teet
Parameter		Symbol	Min	Typ*6	Max	Min	Typ ^{*6}	Max	Unit	conditions
Second suspend delay during erasure in	64-byte	t _{DSESD2}	-	-	300	-	—	300	μs	
suspena priority mode	128-byte		—	_	390	-	-	390		
	256-byte		—	_	570	-	-	570		
Suspend delay during erasing in erasure	64-byte	t _{DSEED}	-	—	300	-	-	300	μs	
priority mode	128-byte		—	—	390	—	-	390]	
	256-byte		—	—	570	-	—	570]	
First erasing resume time during erasure in suspend priority mode ^{*5}		t _{DREST1}	-	-	300	_	-	300	μs	
Second erasing resume time during erasur suspend priority mode	e in	t _{DREST2}	-	-	126	_	-	70	μs	
Erasing resume time during erasure in eras priority mode	sure	t _{DREET}	—	_	126	—	—	70	μs	
Forced stop command		t _{FD}	-	—	32	-	_	20	μs	
Data hold time ^{*3}		t _{DRP}	10*3 *4	_	—	10*3 *4	-	_	Year	

Note 1. The reprogram/erase cycle is the number of erasures for each block. When the reprogram/erase cycle is n times (n = 125,000), erasing can be performed n times for each block. For example, when 4-byte programming is performed 16 times for different addresses in 64-byte blocks, and then the entire block is erased, the reprogram/erase cycle is counted as one. However, programming the same address several times as one erasure is not enabled. Overwriting is prohibited.

Note 2. This is the minimum number of times to guarantee all the characteristics after reprogramming. The guaranteed range is from 1 to the minimum value.

Note 3. This indicates the minimum value of the characteristic when reprogramming is performed within the specified range.

Note 4. This result is obtained from reliability testing.

Note 5. Time for resumption includes time for reapplying the erasing pulse (up to one full pulse) that was cut off at the time of suspension.

Note 6. The reference value at VCC = 3.3 V and room temperature.

2.12.3 **Option Setting Memory Characteristics**

Table 2.48 Option setting memory characteristics

Conditions: Program: FCLK = 4 to 50 MHz Read: FCLK ≤ 50 MHz

		FCLK = 4 MHz 20 MHz ≤ FCLK ≤ 50 MHz							
Parameter	Symbol	Min	Typ ^{*4}	Max	Min	Typ ^{*4}	Max	Unit	Test conditions
Programming time N _{OPC} ≤ 100 times	t _{OP}	_	83	309	_	45	162	ms	
Programming time N _{OPC} > 100 times	t _{OP}	_	100	371	_	55	195	ms	
Reprogramming cycle	N _{OPC}	20000*1	_	-	20000*1	-	-	Times	
Data hold time ^{*2}	t _{DRP}	10 ^{*2 *3}	-	-	10 ^{*2 *3}	-	-	Years	

Note 1. This is the minimum number of times to guarantee all the characteristics after reprogramming. The guaranteed range is from 1 to the minimum value

Note 2. This indicates the minimum value of the characteristic when reprogramming is performed within the specified range.

Note 3. This result is obtained from reliability testing.

Note 4. The reference value at VCC = 3.3 V and room temperature.

2.13 **Boundary Scan**

RA4M3 Datasheet

Table 2.47 数据闪存特性(2of2)

条件: 编程或擦除: FCLK=4至50MHz Read: FCLK ≤ 50 MHz

			FCLK = 4 MHz		20 MHz ≤ F	CLK ≤ 5	50 MHz		测试冬件	
Parameter		Symbol	Min	典型*6量	最大值最- □	, 小值 」	Typ*6	Max	Unit	ᄵᄥ
挂起优先模式下擦除期间的第二挂起延	64-byte	t _{DSESD2}	-	—	300	—	—	300	μs	
	128-byte		—	—	390	—	—	390		
	256-byte		—	—	570	—	—	570		
在擦除优先模式下擦除期间暂停延迟	64-byte	t _{DSEED}	—	—	300	—	—	300	μs	
	128-byte		—	—	390	—	—	390		
	256-byte		—	—	570	—	—	570		
		t _{DREST1}	_	_	300	_	_	300	μs	
	时	t _{DREST2}	_	_	126	_	_	70	μs	
在擦除优先模式下擦除期间擦除恢复时间		t _{DREET}	—	—	126	_	_	70	μs	
强制停止命令		t _{FD}	_	—	32	_	_	20	μs	
数据保持时间*3		t _{DRP}	10 ^{*3 *4}	—	—	10 ^{*3 *4}	—	—	Year	

注1.重新编程擦除周期是每个块的擦除次数。当重新编程擦除周期为n次(n=125 000)时,可以对每个块执行n次擦除。例如,当对64字 节块中的不同地址执行16次4字节编程,然后擦除整个块时,重新编程擦除周期计为1。但是,不能将同一地址多次编程为一次擦除。禁 止覆盖。

注2.这是重新编程后保证所有特性的最少次数。保证范围是从1到最小值。

注3.这表示在指定范围内执行重新编程时特性的最小值。

注4:此结果来自可靠性测试。 注5.恢复时间包括重新应用暂停时切断的擦除脉冲(最多1个完整脉冲)的时间。 注6.VCC=3.3V和室温下的参考值。

选项设置内存特性 2.12.3

Table 2.48 选项设置内存特性

Conditions: Program: FCLK = 4 to 50 MHz Read: FCLK ≤ 50 MHz

		FCLK = 4	MHz		20 MHz ≤ FCLK ≤ 50 MHz				
Parameter	Symbol	Min	Typ ^{*4}	Мах	Min	Typ ^{*4}	Мах	Unit	测试条件
编程时间NOPC≤1 00次	t _{OP}	_	83	309	_	45	162	ms	
编程时间NOPC>1 00次	t _{OP}	_	100	371	_	55	195	ms	
重编程周期	N _{OPC}	20000*1	_	_	20000*1	_	_	Times	
数据保持时间*2	t _{DRP}	10 ^{*2 *3}	_	_	10 ^{*2 *3}	—	_	Years	

注1.这是重新编程后保证所有特性的最少次数。保证范围是从1到最小值。

注2.这表示在指定范围内执行重新编程时特性的最小值。 注3:此结果来自可靠性测试。 注4.VCC=3.3V和室温下的参考值。

边界扫描 2.13

RA4M3 Datasheet

Table 2.49 Boundary scan characteristics

Parameter	Symbol	Min	Тур	Мах	Unit	Test conditions
TCK clock cycle time	t _{TCKcyc}	100	-	-	ns	Figure 2.63
TCK clock high pulse width	t _{TCKH}	45	_	—	ns	
TCK clock low pulse width	t _{TCKL}	45	—	—	ns	
TCK clock rise time	t _{TCKr}	-	—	5	ns	
TCK clock fall time	t _{TCKf}	_	_	5	ns	
TMS setup time	t _{TMSS}	20	_	—	ns	Figure 2.64
TMS hold time	t _{TMSH}	20	_	—	ns	
TDI setup time	t _{TDIS}	20	_	—	ns	
TDI hold time	t _{TDIH}	20	—	-	ns	
TDO data delay	t _{TDOD}	_	_	40	ns	
Boundary scan circuit startup time ^{*1}	T _{BSSTUP}	t _{RESWP}	_	—	_	Figure 2.65

Note 1. Boundary scan does not function until the power-on reset becomes negative.

Figure 2.63 Boundary scan TCK timing

Figure 2.64 Boundary scan input/output timing

Parameter	Symbol	Min	Тур	Max	Unit	测试条件
TCK时钟周期时间	t _{TCKcyc}	100	_	_	ns	Figure 2.63
TCK时钟高脉冲宽度	t _{тскн}	45	_	_	ns	
TCK时钟低脉冲宽度	t _{TCKL}	45	_	_	ns	
TCK时钟上升时间	t _{TCKr}	_	_	5	ns	
TCK时钟下降时间	t _{TCKf}	_	_	5	ns	
TMS设置时间	t _{TMSS}	20	_	_	ns	Figure 2.64
TMS保持时间	t _{TMSH}	20	_	_	ns	
TDI建立时间	t _{TDIS}	20	_	_	ns	
TDI保持时间	t _{TDIH}	20	_	—	ns	
TDO数据延迟	t _{TDOD}	_	_	40	ns	
边界扫描电路启动时间*1	T _{BSSTUP}	t _{RESWP}	_	_	_	Figure 2.65

注1.在上电复位变为负值之前,边界扫描不起作用。

Figure 2.63 边界扫描TCK时序

2. Electrical Characteristics

RA4M3 Datasheet

Figure 2.65 Boundary scan circuit startup timing

Joint European Test Action Group (JTAG) 2.14

JTAG Table 2.50

Parameter	Symbol	Min	Тур	Max	Unit	Test conditions
TCK clock cycle time	t _{TCKcyc}	40	-	-	ns	Figure 2.66
TCK clock high pulse width	t _{тскн}	15	-	_	ns	
TCK clock low pulse width	t _{TCKL}	15	_	-	ns	
TCK clock rise time	t _{TCKr}	—	_	5	ns	
TCK clock fall time	t _{TCKf}	—	_	5	ns	
TMS setup time	t _{TMSS}	8	_	—	ns	Figure 2.67
TMS hold time	t _{TMSH}	8	_	—	ns	
TDI setup time	t _{TDIS}	8	—	-	ns	1
TDI hold time	t _{TDIH}	8	—	-	ns	1
TDO data delay time	t _{TDOD}	—	_	20	ns	1

Figure 2.65 边界扫描电路启动时序

欧洲联合测试行动小组(JTAG) 2.14

Table 2.50 JTAG

Parameter	Symbol	Min	Тур	Max	Unit	测试条件
TCK时钟周期时间	t _{TCKcyc}	40	_	—	ns	Figure 2.66
TCK时钟高脉冲宽度	t _{тскн}	15	_	_	ns	
TCK时钟低脉冲宽度	t _{TCKL}	15	_	_	ns	
TCK时钟上升时间	t _{TCKr}	_	_	5	ns	
TCK时钟下降时间	t _{TCKf}	_	_	5	ns	
TMS设置时间	t _{TMSS}	8	_	_	ns	Figure 2.67
TMS保持时间	t _{TMSH}	8	_	_	ns	
TDI建立时间	t _{TDIS}	8	_	_	ns	
TDI保持时间	t _{TDIH}	8	_	_	ns	
TDO数据延迟时间	t _{TDOD}	_	_	20	ns	

2. Electrical Characteristics

RA4M3 Datasheet

Figure 2.67 JTAG input/output timing

Serial Wire Debug (SWD) 2.15

SWD Table 2.51

Parameter	Symbol	Min	Тур	Мах	Unit	Test conditions
SWCLK clock cycle time	t _{SWCKcyc}	40	-	_	ns	Figure 2.68
SWCLK clock high pulse width	tswcкн	15	-	-	ns	
SWCLK clock low pulse width	t _{SWCKL}	15	-	_	ns	
SWCLK clock rise time	t _{SWCKr}	_	-	5	ns	
SWCLK clock fall time	t _{SWCKf}	_	-	5	ns	
SWDIO setup time	t _{SWDS}	8	-	_	ns	Figure 2.69
SWDIO hold time	t _{SWDH}	8	-	_	ns	
SWDIO data delay time	tswdd	2	-	28	ns	

Figure 2.67 JTAG input/output timing

串行线调试(SWD) 2.15

SWD Table 2.51

Parameter	Symbol	Min	Тур	Max	Unit	测试条件
SWCLK时钟周期时间	t _{SWCKcyc}	40	-	—	ns	Figure 2.68
SWCLK时钟高脉冲宽度	tswcкн	15	-	—	ns	
SWCLK时钟低脉冲宽度	tSWCKL	15	-	—	ns	
SWCLK时钟上升时间	tswckr	-	-	5	ns	
SWCLK时钟下降时间	t _{SWCKf}	-	-	5	ns	
SWDIO设置时间	t _{SWDS}	8	-	_	ns	Figure 2.69
SWDIO保持时间	t _{SWDH}	8	-	_	ns	
SWDIO数据延迟时间	t _{SWDD}	2	-	28	ns	

Embedded Trace Macro Interface (ETM) 2.16

2. Electrical Characteristics

RA4M3 Datasheet

Table 2.52 ETM

Conditions: High speed high drive output is selected in the Port Drive Capability bit in the PmnPFS register.

Parameter	Symbol	Min	Тур	Мах	Unit	Test conditions
TCLK clock cycle time	t _{TCLKcyc}	40	-	_	ns	Figure 2.70
TCLK clock high pulse width	t _{TCLKH}	17	_	_	ns	
TCLK clock low pulse width	t _{TCLKL}	17	-	_	ns	
TCLK clock rise time	t _{TCLKr}	-	-	3	ns	
TCLK clock fall time	t _{TCLKf}	-	-	3	ns	
TDATA[3:0] output setup time	t _{TRDS}	3.5	-	-	ns	Figure 2.71
TDATA[3:0] output hold time	t _{TRDH}	2.5	-	-	ns	

Figure 2.70 ETM TCLK timing

Figure 2.71 ETM output timing

RENESAS

Мах	Unit	测试条件
—	ns	Figure 2.70
_	ns	
_	ns	
3	ns	
3	ns	
_	ns	Figure 2.71
	ns	

Port States in Each Processing Mode Appendix 1.

					After Deep Software Standby mode is canceled (return to startup mode)	
Function	Pin function	Reset	Software Standby mode	Standby mode	IOKEEP = 0	IOKEEP = 1 ^{*1}
Mode	MD	Pull-up	Кеер-О	Кеер	Hi-Z	Кеер
JTAG	TCK/TMS/TDI	Pull-up	Кеер-О	Кеер	Hi-Z	Кеер
	TDO	output	Кеер-О	Кеер	TDO output	Кеер
IRQ	IRQx	Hi-Z	Keep-O ^{*2}	Кеер	Hi-Z	Кеер
	IRQx-DS	Hi-Z	Keep-O ^{*2}	Keep ^{*3}	Hi-Z	Кеер
AGT	AGTIOn	Hi-Z	Keep-O*2	Кеер	Hi-Z	Кеер
	AGTIOn (n=1,3)	Hi-Z	Keep-O*2	Keep ^{*3}	Hi-Z	Кеер
SCI	RXD0	Hi-Z	Keep-O ^{*2}	Кеер	Hi-Z	Кеер
IIC	SCLn/SDAn	Hi-Z	Keep-O ^{*2}	Кеер	Hi-Z	Кеер
USBFS	USB_OVRCURx	Hi-Z	Keep-O*2	Кеер	Hi-Z	Кеер
	USB_OVRCURx-DS/ USB_VBUS	Hi-Z	Keep-O ^{*2}	Keep ^{*3}	Hi-Z	Кеер
	USB_DP/USB_DM	Hi-Z	Keep-O ^{*4}	Keep ^{*3}	Hi-Z	Кеер
RTC	RTCICx	Hi-Z	Keep-O ^{*2}	Keep ^{*3}	Hi-Z	Кеер
	RTCOUT	Hi-Z	[RTCOUT selected] RTCOUT output	Кеер	Hi-Z	Кеер
CLKOUT	CLKOUT	Hi-Z	[CLKOUT selected] CLKOUT output	Кеер	Hi-Z	Кеер
DAC	DAn	Hi-Z	[DAn output (DAOE = 1)] D/A output retained	Кеер	Hi-Z	Кеер
Others		Hi-Z	Keep-O	Кеер	Hi-Z	Кеер

Keep-O: Output pins retain their previous values. Input pins go to high-impedance. Keep: Pin states are retained during periods in Software Standby mode. Note 1. Retains the I/O port state until the DPSBYCR.IOKEEP bit is cleared to 0.

Note 2. Input is enabled if the pin is specified as the Software Standby canceling source while it is used as an external interrupt pin.

Note 3. Input is enabled if the pin is specified as the Deep Software Standby canceling source.

Note 4. Input is enabled while the pin is used as an input pin.

RA4M3 Datasheet

Appendix 1.

每种处理模式下的端口状态

					取消深度软件(回启动模式)	取消深度软件待机模式后(返 回启动模式)	
Function	引脚功能	Reset	软件待机模式	深度软件待机 模式	IOKEEP = 0	IOKEEP = 1 ^{*1}	
Mode	MD	Pull-up	Keep-O	Кеер	Hi-Z	Кеер	
JTAG	TCK/TMS/TDI	Pull-up	Кеер-О	Кеер	Hi-Z	Кеер	
	TDO	output	Keep-O	Кеер	TDO输出	Кеер	
IRQ	IRQx	Hi-Z	Keep-O ^{*2}	Кеер	Hi-Z	Кеер	
	IRQx-DS	Hi-Z	Keep-O ^{*2}	Keep ^{*3}	Hi-Z	Кеер	
AGT	AGTIOn	Hi-Z	Keep-O ^{*2}	Кеер	Hi-Z	Кеер	
	AGTIOn (n=1,3)	Hi-Z	Keep-O ^{*2}	Keep ^{*3}	Hi-Z	Кеер	
SCI	RXD0	Hi-Z	Keep-O ^{*2}	Кеер	Hi-Z	Кеер	
IIC	SCLn/SDAn	Hi-Z	Keep-O ^{*2}	Кеер	Hi-Z	Кеер	
USBFS	USB_OVRCURx	Hi-Z	Keep-O ^{*2}	Кеер	Hi-Z	Кеер	
	USB_OVRCURx-DS/ USB_VBUS	Hi-Z	Keep-O*2	Keep ^{*3}	Hi-Z	Кеер	
	USB_DP/USB_DM	Hi-Z	Keep-O ^{*4}	Keep ^{*3}	Hi-Z	Кеер	
RTC	RTCICx	Hi-Z	Keep-O ^{*2}	Keep ^{*3}	Hi-Z	Кеер	
	RTCOUT	Hi-Z	[RTCOUT selected] RTCOUT output	Кеер	Hi-Z	Кеер	
CLKOUT	CLKOUT	Hi-Z	[CLKOUT selected] CLKOUT output	Кеер	Hi-Z	Кеер	
DAC	DAn	Hi-Z	[DAn输出(DAOE=1)]DA输出保留	Кеер	Hi-Z	Кеер	
Others	_	Hi-Z	Кеер-О	Кеер	Hi-Z	Кеер	

Note: H: High-level

Note: H: High-level L: Low-level Hi-Z: High-impedance Keep-O: 输出引脚保留其先前的值。输入引脚变为高阻抗。 保持: 在软件待机模式期间保持引脚状态。 注1.保持IO端口状态直到DPSBYCR.IOKEEP位被清除为0。 注2.如果引脚被指定为软件待机取消源,同时它被用作外部中断引脚,则输入被启用。 注3.如果引脚被指定为深度软件待机取消源,则启用输入。

注4.当引脚用作输入引脚时,输入被启用。

Appendix 2. Package Dimensions

Information on the latest version of the package dimensions or mountings is displayed in "Packages" on the Renesas Electronics Corporation website.

包装尺寸 Appendix 2.

最新版本的封装尺寸或安装信息显示在瑞萨电子的"封装"中 电子公司网站。

©2015瑞萨电子公司。版权所有。

e	以前的代码	MAS	S (Typ)	[g]
С	_		0.3	
Ē			Uni	it: mm
	注11.尺寸*1"和*2"不包括毛边。2 视觉索引功能可能会有所不同,但 的倒角是可选的,尺寸可能会有所	尺寸**3*不包 必须位于阴翳 不同。	括微调偏利 乡区域内。	多。3.PIN1 4.拐角处
				<u> </u>
	参考符号	八 「 Min	S本内牢证 Nom	Max
	D	9.9	10.0	10.1
	E	9.9	10.0	10.1
	A2		1.4	
		11.8	12.0	12.2
	HE	11.8	12.0	12.2
	A	_	_	1.7
	A1	0.05	_	0.15
	bn	0.15	0.20	0.27
	C C	0.09		0.20
	- С	0°	3.5°	8°
			0.5	
	v v	-	0.0	0.08
				0.00
	y	0.45	0.6	0.00
		0.45	1.0	0.75
			1.0	
(©2015瑞萨电子公司。版权所有。			

I/O Registers Appendix 3.

This appendix describes I/O register address and access cycles by function.

3.1 Peripheral Base Addresses

This section provides the base addresses for peripherals described in this manual. Table 3.1 shows the name, description, and the base address of each peripheral.

Table 3.1Peripheral base address (1 of 3)

Name	Description	Base address
RMPU	Renesas Memory Protection Unit	0x4000_0000
TZF	TrustZone Filter	0x4000_0E00
SRAM	SRAM Control	0x4000_2000
BUS	BUS Control	0x4000_3000
DMAC0	Direct memory access controller 0	0x4000_5000
DMAC1	Direct memory access controller 1	0x4000_5040
DMAC2	Direct memory access controller 2	0x4000_5080
DMAC3	Direct memory access controller 3	0x4000_50C0
DMAC4	Direct memory access controller 4	0x4000_5100
DMAC5	Direct memory access controller 5	0x4000_5140
DMAC6	Direct memory access controller 6	0x4000_5180
DMAC7	Direct memory access controller 7	0x4000_51C0
DMA	DMAC Module Activation	0x4000_5200
DTC	Data Transfer Controller	0x4000_5400
ICU	Interrupt Controller	0x4000_6000
CACHE	CACHE	0x4000_7000
CPSCU	CPU System Security Control Unit	0x4000_8000
DBG	Debug Function	0x400_1B000
FCACHE	Flash Cache	0x400_1C100
SYSC	System Control	0x4001_E000
PORT0	Port 0 Control Registers	0x4008_0000
PORT1	Port 1 Control Registers	0x4008_0020
PORT2	Port 2 Control Registers	0x4008_0040
PORT3	Port 3 Control Registers	0x4008_0060
PORT4	Port 4 Control Registers	0x4008_0080
PORT5	Port 5 Control Registers	0x4008_00A0
PORT6	Port 6 Control Registers	0x4008_00C0
PORT7	Port 7 Control Registers	0x4008_00E0
PORT8	Port 8 Control Registers	0x4008_0100
PFS	Pmn Pin Function Control Register	0x4008_0800
ELC	Event Link Controller	0x4008_2000
RTC	Realtime Clock	0x4008_3000
IWDT	Independent Watchdog Timer	0x4008_3200
WDT	Watchdog Timer	0x4008_3400
CAC	Clock Frequency Accuracy Measurement Circuit	0x4008_3600

I/O Registers Appendix 3. 本附录按功能描述了IO寄存器地址和访问周期。

外设基地址 3.1

本节提供本手册中描述的外设的基地址。表3.1显示了每个外设的名称、描述和基地址。

Table 3.1 外	āble 3.1 外设基地址(1of3)				
Name	Description	基址			
RMPU	瑞萨内存保护单元	0x4000_0000			
TZF	TrustZone Filter	0x4000_0E00			
SRAM	SRAM Control	0x4000_2000			
BUS	总线控制	0x4000_3000			
DMAC0	直接内存访问控制器0	0x4000_5000			
DMAC1	直接内存访问控制器1	0x4000_5040			
DMAC2	直接内存访问控制器2	0x4000_5080			
DMAC3	直接内存访问控制器3	0x4000_50C0			
DMAC4	直接内存访问控制器4	0x4000_5100			
DMAC5	直接内存访问控制器5	0x4000_5140			
DMAC6	直接内存访问控制器6	0x4000_5180			
DMAC7	直接内存访问控制器7	0x4000_51C0			
DMA	DMAC模块激活	0x4000_5200			
DTC	数据传输控制器	0x4000_5400			
ICU	中断控制器	0x4000_6000			
CACHE	CACHE	0x4000_7000			
CPSCU	CPU系统安全控制单元	0x4000_8000			
DBG	调试功能	0x400_1B000			
FCACHE	闪存缓存	0x400_1C100			
SYSC	系统控制	0x4001_E000			
PORT0	端口0控制寄存器	0x4008_0000			
PORT1	端口1控制寄存器	0x4008_0020			
PORT2	端口2控制寄存器	0x4008_0040			
PORT3	端口3控制寄存器	0x4008_0060			
PORT4	端口4控制寄存器	0x4008_0080			
PORT5	端口5控制寄存器	0x4008_00A0			
PORT6	端口6控制寄存器	0x4008_00C0			
PORT7	端口7控制寄存器	0x4008_00E0			
PORT8	端口8控制寄存器	0x4008_0100			
PFS	Pmn引脚功能控制寄存器	0x4008_0800			
ELC	事件链接控制器	0x4008_2000			
RTC	实时时钟	0x4008_3000			
IWDT	独立看门狗定时器	0x4008_3200			
WDT	看门狗定时器	0x4008_3400			
CAC	时钟频率精度测量电路	0x4008_3600			

Table 3.1Peripheral base address (2 of 3)

Name	Description	Base address
MSTP	Module Stop Control A, B, C, D	0x4008_4000
POEG	Port Output Enable Module for GPT	0x4008_A000
USBFS	USB 2.0 FS Module	0x4009_0000
SDHI0	SD Host Interface 0	0x4009_2000
SSIE0	Serial Sound Interface Enhanced (SSIE)	0x4009_D000
IIC0	Inter-Integrated Circuit 0	0x4009_F000
IICOWU	Inter-Integrated Circuit 0 Wake-up Unit	0x4009_F014
IIC1	Inter-Integrated Circuit 1	0x4009_F100
CAN0	CAN0 Module	0x400A_8000
CAN1	CAN1 Module	0x400A_9000
CTSU	Capacitive Touch Sensing Unit	0x400D_0000
PSCU	Peripheral Security Control Unit	0x400E_0000
AGT0	Low Power Asynchronous General purpose Timer 0	0x400E_8000
AGT1	Low Power Asynchronous General purpose Timer 1	0x400E_8100
AGT2	Low Power Asynchronous General purpose Timer 2	0x400E_8200
AGT3	Low Power Asynchronous General purpose Timer 3	0x400E_8300
AGT4	Low Power Asynchronous General purpose Timer 4	0x400E_8400
AGT5	Low Power Asynchronous General purpose Timer 5	0x400E_8500
TSN	Temperature Sensor	0x400F_3000
CRC	CRC Calculator	0x4010_8000
DOC	Data Operation Circuit	0x4010_9000
SCI0	Serial Communication Interface 0	0x4011_8000
SCI1	Serial Communication Interface 1	0x4011_8100
SCI2	Serial Communication Interface 2	0x4011_8200
SCI3	Serial Communication Interface 3	0x4011_8300
SCI4	Serial Communication Interface 4	0x4011_8400
SCI9	Serial Communication Interface 9	0x4011_8900
SPI0	Serial Peripheral Interface 0	0x4011_A000
SCE9	Secure Cryptographic Engine	0x4016_1000
GPT320	General PWM 32-Bit Timer 0	0x4016_9000
GPT321	General PWM 32-Bit Timer 1	0x4016_9100
GPT322	General PWM 32-Bit Timer 2	0x4016_9200
GPT323	General PWM 32-Bit Timer 3	0x4016_9300
GPT164	General PWM 16-Bit Timer 4	0x4016_9400
GPT165	General PWM 16-Bit Timer 5	0x4016_9500
GPT166	General PWM 16-Bit Timer 6	0x4016_9600
GPT167	General PWM 16-Bit Timer 7	0x4016_9700
GPT_OPS	Output Phase Switching Controller	0x4016_9A00
ADC120	12bit A/D Converter 0	0x4017_0000
ADC121	12bit A/D Converter 1	0x4017_0200
DAC12	12-bit D/A converter	0x4017_1000

RA4M3 Datasheet

Fable 3.1 外设基地址(2个,共3个)				
Name	Description	基址		
MSTP	模块停止控制A、B、C、D	0x4008_4000		
POEG	GPT端口输出使能模块	0x4008_A000		
USBFS	USB2.0FS模块	0x4009_0000		
SDHI0	SD主机接口0	0x4009_2000		
SSIE0	串行声音接口增强(SSIE)	0x4009_D000		
IIC0	Inter-Integrated Circuit 0	0x4009_F000		
IICOWU	内部集成电路0唤醒单元	0x4009_F014		
IIC1	Inter-Integrated Circuit 1	0x4009_F100		
CAN0	CAN0 Module	0x400A_8000		
CAN1	CAN1 Module	0x400A_9000		
CTSU	电容式触控感应单元	0x400D_0000		
PSCU	外围安全控制单元	0x400E_0000		
AGT0	低功耗异步通用定时器0	0x400E_8000		
AGT1	低功耗异步通用定时器1	0x400E_8100		
AGT2	低功耗异步通用定时器2	0x400E_8200		
AGT3	低功耗异步通用定时器3	0x400E_8300		
AGT4	低功耗异步通用定时器4	0x400E_8400		
AGT5	低功耗异步通用定时器5	0x400E_8500		
TSN	温度感应器	0x400F_3000		
CRC	CRC Calculator	0x4010_8000		
DOC	数据运算电路	0x4010_9000		
SCI0	串行通讯接口0	0x4011_8000		
SCI1	串行通讯接口1	0x4011_8100		
SCI2	串行通讯接口2	0x4011_8200		
SCI3	串行通讯接口3	0x4011_8300		
SCI4	串行通讯接口4	0x4011_8400		
SCI9	串行通讯接口9	0x4011_8900		
SPI0	串行外设接口0	0x4011_A000		
SCE9	安全加密引擎	0x4016_1000		
GPT320	通用PWM32位定时器0	0x4016_9000		
GPT321	通用PWM32位定时器1	0x4016_9100		
GPT322	通用PWM32位定时器2	0x4016_9200		
GPT323	通用PWM32位定时器3	0x4016_9300		
GPT164	通用PWM16位定时器4	0x4016_9400		
GPT165	通用PWM16位定时器5	0x4016_9500		
GPT166	通用PWM16位定时器6	0x4016_9600		
GPT167	通用PWM16位定时器7	0x4016_9700		
GPT_OPS	输出相位切换控制器	0x4016_9A00		
ADC120	12bit A/D Converter 0	0x4017_0000		
ADC121	12bit A/D Converter 1	0x4017_0200		
DAC12	12-bit D/A converter	0x4017_1000		

R01DS0368EJ0120 Rev.1.20 Dec 2, 2020

RENESAS

Page 86 of 92

Appendix 3. I/O Registers

Appendix 3. I/O Registers

Peripheral base address (3 of 3) Table 3.1

Name	Description	Base address
FLAD	Data Flash	0x407F_C000
FACI	Flash Application Command Interface	0x407F_E000
QSPI	Quad-SPI	0x6400_0000

Name = Peripheral name Note:

Description = Peripheral functionality

Base address = Lowest reserved address or address used by the peripheral

3.2 Access Cycles

This section provides access cycle information for the I/O registers described in this manual.

- Registers are grouped by associated module.
- The number of access cycles indicates the number of cycles based on the specified reference clock.
- In the internal I/O area, reserved addresses that are not allocated to registers must not be accessed, otherwise operations cannot be guaranteed.
- The number of I/O access cycles depends on bus cycles of the internal peripheral bus, divided clock synchronization cycles, and wait cycles of each module. Divided clock synchronization cycles differ depending on the frequency ratio between ICLK and PCLK.
- When the frequency of ICLK is equal to that of PCLK, the number of divided clock synchronization cycles is always constant.
- When the frequency of ICLK is greater than that of PCLK, at least 1 PCLK cycle is added to the number of divided clock synchronization cycles.
- The number of write access cycles indicates the number of cycles obtained by non-bufferable write access.
- This applies to the number of cycles when access from the CPU does not conflict with the instruction fetching to the Note: external memory or bus access from other bus masters such as DTC or DMAC.

Table 3.2 Access cycles (1 of 3)

		Number of access cycles						
	Address	Address		ICLK = PCLK		1	Cuele	
Peripherals	From	То	Read	Write	Read	Write	Unit	Related function
RMPU, TZF, SRAM, BUS, DMACn, DMA, DTC, ICU	0x4000_0000	0x4000_6FFF	4	3	4	3	ICLK	Renesas Memory Protection Unit, TrustZone Filter, SRAM Control, BUS Control, Direct memory access controller n, DMAC Module Activation, DTC Control Register, Interrupt Controller
CACHE	0x4000_7000	0x4000_7FFF	3	5	3	5	ICLK	CACHE
CPSCU, DBG, FCACHE	0x4000_8000	0x4001_CFFF	4	3	4	3	ICLK	CPU System Security Control Unit, Debug Function, Flash Cache
SYSC	0x4001_E000	0x4001_E3FF	5	4	5	4	ICLK	System Control
SYSC	0x4001_E400	0x4001_E5FF	9	8	5 to 8	5 to 8	PCLKB	System Control
PORTn, PFS	0x4008_0000	0x4008_0FFF	5	4	2 to 5	2 to 4	PCLKB	Port n Control Registers, Pmn Pin Function Control Register

RA4M3 Datasheet

Table 3.1 外设基地址(3of3)							
Name	Description	基址					
FLAD	数据闪存	0x407F_C000					
FACI	Flash应用命令接口	0x407F_E000					
QSPI	Quad-SPI	0x6400_0000					

名称=外设名称 Note: 描述=外围功能 基地址=外设使用的最低保留地址或地址

访问周期 3.2

本节提供本手册中描述的IO寄存器的访问周期信息。

●寄存器按相关模块分组。

- ●访问周期数是指基于指定参考时钟的周期数。
- ●在内部IO区,不能访问未分配给寄存器的保留地址,否则无法保证操作。

●IO访问周期数取决于内部外设总线的总线周期、分频时钟同步周期和每个模块的等待周期。分频时钟同步周 期取决于ICLK和PCLK之间的频率比。

●当ICLK的频率等于PCLK的频率时,分频的时钟同步周期数始终是恒定的。

●当ICLK频率大于PCLK频率时,分频时钟同步周期数至少增加1个PCLK周期。

●写访问周期数是指非缓冲写访问所获得的周期数。

这适用于当来自CPU的访问与从外部存储器获取指令或来自其他总线主控器(例如DTC或DMAC)的总线访问不冲突 时的周期数。 Note:

访问周期(1of3) Table 3.2

			访问周期数					
	Address		ICLK = PCLK		ICLK > PCLK ^{*1}		Cycle	
Peripherals	From	То	Read	Write	Read	Write	Unit	相关功能
RMPU, TZF, SRAM, BUS, DMACn, DMA, DTC, ICU	0x4000_0000	0x4000_6FFF	4	3	4	3	ICLK	瑞萨内存保护单 元、TrustZone过 滤器、 SRAM控制,总线 控制、直接内存访问 控制器n、DMAC模块 激活、DTC控制寄存 器、 中断控制器
CACHE	0x4000_7000	0x4000_7FFF	3	5	3	5	ICLK	CACHE
CPSCU, DBG, FCACHE	0x4000_8000	0x4001_CFFF	4	3	4	3	ICLK	CPU系统安全控制单 元,调试 功能,闪存
SYSC	0x4001_E000	0x4001_E3FF	5	4	5	4	ICLK	系统控制
SYSC	0x4001_E400	0x4001_E5FF	9	8	5 to 8	5 to 8	PCLKB	系统控制
PORTn, PFS	0x4008_0000	0x4008_0FFF	5	4	2 to 5	2 to 4	PCLKB	端口n控制 寄存器,Pmn引脚 功能控制 Register

Appendix 3. I/O Registers

RA4M3 Datasheet

Table 3.2 访问周期(2个,共3个)

			访问周期数					
	Address		ICLK = PCL	.K	ICLK > PCLK	(*1		
Peripherals	From	То	Read	Write	Read	Write	Unit	相关功能
ELC, RTC, IWDT, WDT, CAC	0x4008_2000	0x4008_3FFF	5	4	3 to 5	2 to 4	PCLKB	事件链接控制器, 实时时钟,独立
								看门狗定时器, 看门狗定时器, 时钟频率
								Accuracy 测量电路
MSTP	0x4008_4000	0x4008_4FFF	5	4	2 to 5	2 to 4	PCLKB	模块停止控制
POEG	0x4008_A000	0x4008_AFFF	5	4	3 to 5	2 to 4	PCLKB	端口输出使能 GPT模块
USBFS	0x4009_0000	0x4009_3FFF	6	5	3 to 6	3 to 5	PCLKB	USB2.0FS模块
USBFS	0x4009_4000	0x4009_4FFF	4	3	1 to 4	1 to 3	PCLKB	USB2.0FS模块
SDHI0, SSIE0, IICn, IIC0WU	0x4009_2000	0x4009_FFFF	5	4	2 to 5	2 to 4	PCLKB	SD主机接口0, 串行声音接口 增强型,国米 集成电路n 内部集成电路0唤醒单 元
CANn	0x400A_8000	0x400A_9FFF	5	4	2 to 5	2 to 4	PCLKB	CANn模块
CTSU	0x400D_0000	0x400D_FFFF	4	3	1 to 4	1 to 3	PCLKB	Capacitive Touch 传感单元
PSCU	0x400E_0000	0x400E_0FFF	5	4	2 to 5	2 to 4	PCLKB	外围安全 控制单元
AGTn	0x400E_8000	0x400E_8FFF	7	4	5 to 7	2 to 4	PCLKB	低电量 Asynchronous 一般用途 Timer n
TSN	0x400F_3000	0x400F_3FFF	5	4	2 to 5	2 to 4	PCLKB	温度感应器
CRC, DOC	0x4010_8000	0x4010_9FFF	5	4	2 to 5	2 to 4	PCLKA	CRC计算器,数据 运算电路
SCIn	0x4011_8000	0x4011_8FFF	5 ^{*2}	4*2	2 to 5 ^{*2}	2 to 4 ^{*2}	PCLKA	串行通信 Interface n
SPIn	0x4011_A000	0x4011_AFFF	5 ^{*3}	4 ^{*3}	2 to 5 ^{*3}	2 to 4 ^{*3}	PCLKA	串行外设 Interface n
SCE9	0x4016_1000	0x4016_1FFF	6	4	3 to 6	2 to 4	PCLKA	安全密码学 Engine
GPT32n, GPT16n, GPT_OPS	0x4016_9000	0x4016_9FFF	7	4	4 to 7	2 to 4	PCLKA	通用PWM32位定时 器n,通用 PWM16位定时器n, 输出相位 开关控制器
ADC12n, DAC12	0x4017_0000	0x4017_2FFF	5	4	2 to 5	2 to 4	PCLKA	12bit A/D Converter n, 12-bit D/A converter
QSPI	0x6400_0000	0x6400_000F	5	14 to *4	2 to 5	14 to *4	PCLKA	Quad-SPI
QSPI	0x6400_0010	0x6400_0013	25 to *4	6 to ^{*4}	25 to *4	5 to *4	PCLKA	Quad-SPI
QSPI	0x6400_0014	0x6400_0037	5	14 to *4	2 to 5	14 to *4	PCLKA	Quad-SPI
QSPI	0x6400_0804	0x6400_0807	4	3	1 to 4	1 to 3	PCLKA	Quad-SPI

			Number of access cycles					
	Address		ICLK = PCL	(ICLK > PCLK*	1	Cuala	
Peripherals	From	То	Read	Write	Read	Write	Unit	Related function
ELC, RTC, IWDT, WDT, CAC	0x4008_2000	0x4008_3FFF	5	4	3 to 5	2 to 4	PCLKB	Event Link Controller, Realtime Clock, Independent Watchdog Timer, Watchdog Timer, Clock Frequency Accuracy Measurement Circuit
MSTP	0x4008_4000	0x4008_4FFF	5	4	2 to 5	2 to 4	PCLKB	Module Stop Control
POEG	0x4008_A000	0x4008_AFFF	5	4	3 to 5	2 to 4	PCLKB	Port Output Enable Module for GPT
USBFS	0x4009_0000	0x4009_3FFF	6	5	3 to 6	3 to 5	PCLKB	USB 2.0 FS Module
USBFS	0x4009_4000	0x4009_4FFF	4	3	1 to 4	1 to 3	PCLKB	USB 2.0 FS Module
SDHI0, SSIE0, IICn, IIC0WU	0x4009_2000	0x4009_FFFF	5	4	2 to 5	2 to 4	PCLKB	SD Host Interface 0, Serial Sound Interface Enhanced, Inter- Integrated Circuit n, Inter-Integrated Circuit 0 Wake-up Unit
CANn	0x400A_8000	0x400A_9FFF	5	4	2 to 5	2 to 4	PCLKB	CANn Module
CTSU	0x400D_0000	0x400D_FFFF	4	3	1 to 4	1 to 3	PCLKB	Capacitive Touch Sensing Unit
PSCU	0x400E_0000	0x400E_0FFF	5	4	2 to 5	2 to 4	PCLKB	Peripheral Security Control Unit
AGTn	0x400E_8000	0x400E_8FFF	7	4	5 to 7	2 to 4	PCLKB	Low Power Asynchronous General purpose Timer n
TSN	0x400F_3000	0x400F_3FFF	5	4	2 to 5	2 to 4	PCLKB	Temperature Sensor
CRC, DOC	0x4010_8000	0x4010_9FFF	5	4	2 to 5	2 to 4	PCLKA	CRC Calculator, Data Operation Circuit
SCIn	0x4011_8000	0x4011_8FFF	5 ^{*2}	4*2	2 to 5 ^{*2}	2 to 4 ^{*2}	PCLKA	Serial Communication Interface n
SPIn	0x4011_A000	0x4011_AFFF	5 ^{*3}	4 ^{*3}	2 to 5 ^{*3}	2 to 4 ^{*3}	PCLKA	Serial Peripheral Interface n
SCE9	0x4016_1000	0x4016_1FFF	6	4	3 to 6	2 to 4	PCLKA	Secure Cryptographic Engine
GPT32n, GPT16n, GPT_OPS	0x4016_9000	0x4016_9FFF	7	4	4 to 7	2 to 4	PCLKA	General PWM 32-Bit Timer n, General PWM 16-Bit Timer n, Output Phase Switching Controller
ADC12n, DAC12	0x4017_0000	0x4017_2FFF	5	4	2 to 5	2 to 4	PCLKA	12bit A/D Converter n, 12-bit D/A converter
QSPI	0x6400_0000	0x6400_000F	5	14 to *4	2 to 5	14 to *4	PCLKA	Quad-SPI
QSPI	0x6400_0010	0x6400_0013	25 to *4	6 to *4	25 to *4	5 to *4	PCLKA	Quad-SPI
QSPI	0x6400_0014	0x6400_0037	5	14 to *4	2 to 5	14 to *4	PCLKA	Quad-SPI
QSPI	0x6400_0804	0x6400_0807	4	3	1 to 4	1 to 3	PCLKA	Quad-SPI

Appendix 3. I/O Registers

RA4M3 Datasheet

Table 3.2Access cycles (3 of 3)

			Number of access cycles						
	Address		ICLK = FCLK		ICLK > FCLK ^{*1}		Cycle		
Peripherals	From	То	Read	Write	Read	Write	Unit	Related function	
FLAD, FACI	0x407F_C000	0x407F_EFFF	5	4	2 to 5	2 to 4	FCLK	Data Flash, Flash Application Command Interface	

Note 1. If the number of PCLK or FCLK cycles is non-integer (for example 1.5), the minimum value is without the decimal point, and the maximum value is rounded up to the decimal point. For example, 1.5 to 2.5 is 1 to 3.

Note 2. When accessing a 16-bit register (FTDRHL, FRDRHL, FCR, FDR, LSR, and CDR), access is 2 cycles more than the value shown in Table 3.2. When accessing an 8-bit register (including FTDRH, FTDRL, FRDRH, and FRDRL), the access cycles are as shown in Table 3.2.

Note 3. When accessing the 32-bit register (SPDR), access is 2 cycles more than the value in Table 3.2. When accessing an 8-bit or 16-bit register (SPDR_HA), the access cycles are as shown in Table 3.2.

Note 4. The access cycles depend on the QSPI bus cycles.

Table 3.2 访问周期(3个,共3个)

			访问周期数	访问周期数					
	Address		ICLK = FCLK		ICLK > FCLK ^{*1}		Cycle		
Peripherals	From	То	Read	Write	Read	Write	Unit	相关功能	
FLAD, FACI	0x407F_C000	0x407F_EFFF	5	4	2 to 5	2 to 4	FCLK	数据闪存、闪存 应用命令 Interface	

注1.若PCLK或FCLK周期数为非整数(例如1.5),则最小值不带小数点,最大值四舍五入到小数点。例如,1.5到2。5是1到3。

注2.访问16位寄存器(FTDRHL、FRDRHL、FCR、FDR、LSR和CDR)时,访问时间比中所示的值多2个周期 表3.2。访问8位寄存器(包括FTDRH、FTDRL、FRRDH和FRDRL)时,访问周期如下图所示: Table 3.2.

注3.访问32位寄存器(SPDR)时,访问比表3.2中的值多2个周期。访问8位或16位寄存器(SPDR_HA)时,访问周期如表3.2所示。

注4.访问周期取决于QSPI总线周期。

RA4M3 I	Datasheet
---------	-----------

Revision History

RA4M3 Datasheet

修订记录

Revision History

Revision 1.20 — December 2, 2020

First edition, issued

1.20版——2020年12月2日

第一版,已发行

General Precautions in the Handling of Microprocessing Unit and Microcontroller Unit Products

The following usage notes are applicable to all Microprocessing unit and Microportroller unit products from Renesas. For detailed usage notes on the products covered by this document, refer to the relevant sections of the document as well as any technical updates that have been issued for the products.

1. Precaution against Electrostatic Discharge (ESD)

A strong electrical field, when exposed to a CMOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop the generation of static electricity as much as possible, and quickly dissipate it when it occurs. Environmental control must be adequate. When it is dry, a humidifier should be used. This is recommended to avoid using insulators that can easily build up static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work benches and floors must be grounded. The operator must also be grounded using a wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions must be taken for printed circuit boards with mounted semiconductor devices.

2. Processing at power-on

The state of the product is undefined at the time when power is supplied. The states of internal circuits in the LSI are indeterminate and the states of register settings and pins are undefined at the time when power is supplied. In a finished product where the reset signal is applied to the external reset pin, the states of pins are not guaranteed from the time when power is supplied until the reset process is completed. In a similar way, the states of pins in a product that is reset by an on-chip power-on reset function are not guaranteed from the time when power is supplied until the power reaches the level at which resetting is specified

3. Input of signal during power-off state

Do not input signals or an I/O pull-up power supply while the device is powered off. The current injection that results from input of such a signal or I/O pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal elements. Follow the guideline for input signal during power-off state as described in your product documentation.

4. Handling of unused pins

Handle unused pins in accordance with the directions given under handling of unused pins in the manual. The input pins of CMOS products are generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic poise is induced in the vicinity of the LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal become possible

5 Clock signals

After applying a reset, only release the reset line after the operating clock signal becomes stable. When switching the clock signal during program execution, wait until the target clock signal is stabilized. When the clock signal is generated with an external resonator or from an external oscillator during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Additionally, when switching to a clock signal produced with an external resonator or by an external oscillator while program execution is in progress, wait until the target clock signal is stable.

6 Voltage application waveform at input pin

Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between V_{IL} (Max.) and VIH (Min.) due to noise, for example, the device may malfunction. Take care to prevent chattering noise from entering the device when the input level is fixed, and also in the transition period when the input level passes through the area between VIL (Max.) and VIH (Min.).

7 Prohibition of access to reserved addresses

Access to reserved addresses is prohibited. The reserved addresses are provided for possible future expansion of functions. Do not access these addresses as the correct operation of the LSI is not guaranteed.

8 Differences between products

> Before changing from one product to another, for example to a product with a different part number, confirm that the change will not lead to problems. The characteristics of a microprocessing unit or microcontroller unit products in the same group but having a different part number might differ in terms of internal memory capacity, layout pattern, and other factors, which can affect the ranges of electrical characteristics, such as characteristic values, operating margins, immunity to noise, and amount of radiated noise. When changing to a product with a different part number, implement a systemevaluation test for the given product.

处理微处理单元和微控制器的一般注意事项 单位产品

以下使用说明适用于瑞萨的所有微处理单元和微控制器单元产品。有关详细的使用说明 本文档所涵盖的产品,请参阅文档的相关部分以及为产品发布的任何技术更新。

1. 防止静电放电(ESD)

当暴露于CMOS器件时,强电场会导致栅极氧化物的破坏并最终降低器件的运行性能。脚步 必须采取措施,尽可能停止静电的产生,并在出现时迅速消散。环境控制必须 足够的。干燥时,应使用加湿器。建议避免使用容易产生静电的绝缘体。 半导体器件必须在防静电容器、静电屏蔽袋或导电材料中储存和运输。所有测试和 包括工作台和地板在内的测量工具必须接地。操作员还必须使用腕带接地。半导体 不得赤手触摸设备。对于安装有半导体器件的印刷电路板,必须采取类似的预防措施。 2. 上电处理

通电时产品的状态是不确定的。LSI内部电路的状态是不确定的, 通电时寄存器设置和引脚未定义。在将复位信号施加到外部复位的成品中 管脚,从通电到复位过程完成,管脚的状态不能保证。以类似的方式,引脚的状态 在通过片内上电复位功能复位的产品中,从供电时间到供电达到 指定重置的级别。

3. 断电状态下的信号输入

请勿在设备断电时输入信号或IO上拉电源。输入此类信号或IO导致的电流注入 上拉电源可能会导致故障,此时通过设备的异常电流可能会导致内部退化 元素。请按照产品文档中所述的电源关闭状态下的输入信号指南进行操作。 ▲ 处理未使用的引脚

按照手册中未使用引脚处理中给出的说明处理未使用的引脚。CMOS产品的输入引脚是 一般处于高阻状态。在开路状态下使用未使用的引脚操作时,会在附近感应出额外的电磁噪声 LSI,相关的直通电流在内部流动,并且由于将引脚状态错误识别为输入信号而发生故障 成为可能。

5 时钟信号

应用复位后,只有在工作时钟信号稳定后才释放复位线。在程序中切换时钟信号时 执行,等待目标时钟信号稳定。当时钟信号由外部谐振器或外部振荡器产生时 在复位期间,确保只有在时钟信号完全稳定后才释放复位线。此外,当切换到时钟信号时 在程序执行过程中由外部谐振器或外部振荡器产生,等待目标时钟信号稳定。 6. 输入引脚的电压施加波形

由于输入噪声或反射波导致的波形失真可能会导致故障。如果CMOS器件的输入保持在VIL之间的区域 (Max.)和VIH(Min.)由于噪音,例如,设备可能发生故障。小心,以防止颤动的噪音进入设备时, 输入电平是固定的,并且在输入电平通过VIL(Max,)和VIH(Min.)之间的区域时的过渡期间也是如此。 7 禁止访问保留地址

禁止访问保留地址。保留地址是为将来可能的功能扩展提供的。不要访问这些 不能保证LSI的正确操作。

8 产品之间的差异

在从一种产品更改为另一种产品之前,例如更改为具有不同部件号的产品,请确认更改不会导致问题。 同一组中的微处理单元或微控制器单元产品的特性,但具有不同的部件号,其特性可能会有所不同 内部存储器容量,布局模式和其他因素,这些因素会影响电气特性的范围,例如特性值, 工作裕度、抗噪声能力和辐射噪声量。当更改为具有不同部件号的产品时,实施系统-给定产品的评估测试。

Notice

- 1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use of these circuits, software, or information,
- 2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights, or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.
- 3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
- 4. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.
- Renesas Electronics products are classified according to the following two guality grades: "Standard" and "High Quality". The intended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below.
 - "Standard". Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.
 - "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key financial terminal systems; safety control equipment; etc.

Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space system undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product that is inconsistent with any Renesas Electronics data sheet, user's manual or other Renesas Electronics document.

- When using Renesas Electronics products, refer to the latest product information (data sheets, user's manuals, application notes, "General Notes for Handling and Using Semiconductor Devices" in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such specified ranges
- 7. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document. Renesas Electronics products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are responsible for evaluating the safety of the final products or systems manufactured by you.
- Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas 8 Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations
- 9 Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.
- 10. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.
- 11. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products
- "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled (Note1) subsidiaries.
- (Note2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

(Rev.4.0-1 November 2017)

Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu, Koto-ku, Tokyo 135-0061, Japan

www.renesas.com

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners

Contact Information

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit: www.renesas.com/contact/

Notice

- 本文档中对电路、软件和其他相关信息的描述仅用于说明半导体产品的操作和应用示例。您对在您的产品或系统设计中使用或以任何其他方式使用电路、 软件和信息负全部责任。对于您或第三方因使用这些电路、软件或信息而遭受的任何损失和损害,瑞萨电子不承担任何责任。
- 2. 瑞萨电子特此明确声明,对于因使用本文档中描述的瑞萨电子产品或技术信息(包括但不限于产品数据、图纸、图表、程序、算法和应用示例。
- 3 瑞萨电子或其他方的任何专利、版权或其他知识产权在此未授予任何明示、暗示或其他许可。
- 4. 您不得全部或部分更改、修改、复制或反向工程任何瑞萨电子产品。对于您或第三方因此类更改、修改、复制或逆向工程而遭受的任何损失或损害,瑞 萨电子不承担任何责任。
- 5. 瑞萨电子产品根据以下两个质量等级进行分类:"标准"和"高质量"。每个瑞萨电子产品的预期应用取决于产品的质量等级,如下所示。"标准":

电脑:办公用品:通讯设备;测试和测量设备;视听设备;家用电器;机械工具;个人电子设备;工业机器人;等等

"高品质":运输设备(汽车、火车、轮船等);交通管制(红绿灯);大型通讯设备;关键金融终端系统;安全控制设备;除非在瑞萨电子数据表或其他 "周山饭"。这种时後留"公计》大手",它加导的"这些外灯",大量通知设备,不是通知设备,不是通知设备,不是让时设备,你并且"加"。50°公前很多来说。 "谢萨电子文档中明确指定为高可靠性产品或适用于恶劣环境的产品,否则"腊萨电子产品不得用于或授权用于可能对人类构成直接威胁的产品或系统生命或 身体伤害(人工生命支持设备或系统;外科植入物等),或可能造成严重财产损失(空间系统;海底中继器;核电控制系统;飞机控制系统;关键工厂系统;军事装备等)。)。对于您或任何第三方因使用与任何瑞萨电子数据表、用户手册或其他瑞萨电子文档不一致的任何瑞萨电子产品而导致的任何损害 统;车事装备等)。)。对于您或f 或损失,瑞萨电子不承担任何责任。

- 6. 使用瑞萨电子产品时,请参阅最新的产品信息(数据表、用户手册、应用说明、"通用说明 处理和使用半导体器件"在可靠性手册等),并确保使用条件在规定的范围内 瑞萨电子关于最大额定值、工作电源电压范围、散热特性、安装等方面的信息。瑞萨电子不对因在上述规定范围之外使用瑞萨电子产品而引起的任何故障 故障或事故承担任何责任
- 7. 尽管瑞萨电子努力提高瑞萨电子产品的质量和可靠性,但半导体产品具有特定的特性,例如以一定的速度发生故障以及在特定使用条件下发生故障。除非 在瑞萨电子数据表或其他瑞萨电子文档中指定为高可靠性产品或适用于恶劣环境的产品,否则瑞萨电子产品不受抗辐射设计的约束。您有责任实施安全措 的最终产品或系统的安全性。
- 8. 请联系瑞萨电子销售办事处了解有关环境问题的详细信息,例如每个瑞萨电子的环境兼容性 用水流调,包计自己分量及了新行入行场间运过并通信之,防闭设备用加制。包括75%涨每日 电子产品。您有责任仔细、充分地调查适用于管制物质的包含或使用的法律和法规,包括但不限于欧盟RoHS指令,并按照所有这些适用的法律和法规使 用瑞萨电子产品。瑞萨电子对因您不遵守适用法律和法规而造成的损害或损失不承担任何责任。

9.瑞萨电子的产品和技术不得用于或整合到任何适用的国内或国外法律或法规禁止制造、使用或销售的产品或系统中。您应遵守对各方或交易主张管辖权的 任何国家/地区的政府颁布和管理的任何适用的出口管制法律和法规。10.瑞萨电子产品的购买者或分销商,或将产品分销、处置或以其他方式出售或转让给 第三方的任何其他方,有责任提前通知该第三方有关内容和条件本文件中规定。11.未经瑞萨电子事先书面同意,不得以任何形式全部或部分翻印、复制或复 制本文档。12.如果您对本文档中包含的信息或瑞萨电子产品有任何疑问,请联系瑞萨电子销售办事处。

(Note1) 本文档中使用的"瑞萨电子"是指瑞萨电子公司,还包括其直接或间接控制的子公司。

(Note2) "瑞萨电子产品"是指由瑞萨电子开发或制造或为瑞萨电子开发或制造的任何产品

公司总部

TOYOSU FORESIA, 3-2-24 Toyosu, 日本东京都江东区135-0061 www.renesas.com

Trademarks

瑞萨和瑞萨标识是瑞萨电子公司的商标。所有商标和注册商标均为其各 自所有者的财产

(Rev.4.0-1 November 2017)

联系信息

有关产品、技术、文档的最新版本或离您最近的销售办事处的更多信 息, 请访问:

www.renesas.com/contact/